2 ///////////////////////////////////////////////////////////////////////////
3 // This program is free software: you can redistribute it and/or modify //
4 // it under the terms of the version 3 of the GNU General Public License //
5 // as published by the Free Software Foundation. //
7 // This program is distributed in the hope that it will be useful, but //
8 // WITHOUT ANY WARRANTY; without even the implied warranty of //
9 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU //
10 // General Public License for more details. //
12 // You should have received a copy of the GNU General Public License //
13 // along with this program. If not, see <http://www.gnu.org/licenses/>. //
15 // Written by Francois Fleuret, (C) IDIAP //
16 // Contact <francois.fleuret@idiap.ch> for comments & bug reports //
17 ///////////////////////////////////////////////////////////////////////////
21 This class is mostly able to learn a classifier from a SampleSet and
22 to provide a scalar response on any test sample. Additional methods
23 are required for persistence and select the possibly very few used
32 #include "pi_feature_family.h"
33 #include "sample_set.h"
34 #include "pose_cell_hierarchy.h"
35 #include "labelled_image_pool.h"
36 #include "loss_machine.h"
38 class Classifier : public Storable {
40 virtual ~Classifier();
42 // Evaluate on a sample
43 virtual scalar_t response(SampleSet *sample_set, int n_sample) = 0;
45 // Train the classifier
46 virtual void train(LossMachine *loss_machine, SampleSet *train, scalar_t *response) = 0;
48 // Tag in the boolean array which features are actually used
49 virtual void tag_used_features(bool *used) = 0;
50 // Change the indexes of the used features
51 virtual void re_index_features(int *new_indexes) = 0;
54 virtual void read(istream *is) = 0;
55 virtual void write(ostream *os) = 0;
57 void extract_pi_feature_family(PiFeatureFamily *full_pi_feature_family,
58 PiFeatureFamily *extracted_pi_feature_family);