*** empty log message ***
[folded-ctf.git] / classifier.h
1
2 ///////////////////////////////////////////////////////////////////////////
3 // This program is free software: you can redistribute it and/or modify  //
4 // it under the terms of the version 3 of the GNU General Public License //
5 // as published by the Free Software Foundation.                         //
6 //                                                                       //
7 // This program is distributed in the hope that it will be useful, but   //
8 // WITHOUT ANY WARRANTY; without even the implied warranty of            //
9 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU      //
10 // General Public License for more details.                              //
11 //                                                                       //
12 // You should have received a copy of the GNU General Public License     //
13 // along with this program. If not, see <http://www.gnu.org/licenses/>.  //
14 //                                                                       //
15 // Written by Francois Fleuret, (C) IDIAP                                //
16 // Contact <francois.fleuret@idiap.ch> for comments & bug reports        //
17 ///////////////////////////////////////////////////////////////////////////
18
19 /*
20
21   This class is mostly able to learn a classifier from a SampleSet and
22   to provide a scalar response on any test sample. Additional methods
23   are required for persistence and select the possibly very few used
24   features.
25
26 */
27
28 #ifndef CLASSIFIER_H
29 #define CLASSIFIER_H
30
31 #include "storable.h"
32 #include "pi_feature_family.h"
33 #include "sample_set.h"
34 #include "pose_cell_hierarchy.h"
35 #include "labelled_image_pool.h"
36 #include "loss_machine.h"
37
38 class Classifier : public Storable {
39 public:
40   virtual ~Classifier();
41
42   // Evaluate on a sample
43   virtual scalar_t response(SampleSet *sample_set, int n_sample) = 0;
44
45   // Train the classifier
46   virtual void train(LossMachine *loss_machine, SampleSet *train, scalar_t *response) = 0;
47
48   // Tag in the boolean array which features are actually used
49   virtual void tag_used_features(bool *used) = 0;
50   // Change the indexes of the used features
51   virtual void re_index_features(int *new_indexes) = 0;
52
53   // Storage
54   virtual void read(istream *is) = 0;
55   virtual void write(ostream *os) = 0;
56
57   void extract_pi_feature_family(PiFeatureFamily *full_pi_feature_family,
58                                  PiFeatureFamily *extracted_pi_feature_family);
59 };
60
61 #endif