319e94b1856f49f322d593bc902bebfc09a6a2d3
[picoclvr.git] / main.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(
30     description="An implementation of GPT with cache.",
31     formatter_class=argparse.ArgumentDefaultsHelpFormatter,
32 )
33
34 parser.add_argument(
35     "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake, stack, expr"
36 )
37
38 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
39
40 parser.add_argument("--result_dir", type=str, default=None)
41
42 parser.add_argument("--seed", type=int, default=0)
43
44 parser.add_argument("--nb_epochs", type=int, default=None)
45
46 parser.add_argument("--batch_size", type=int, default=None)
47
48 parser.add_argument("--nb_train_samples", type=int, default=None)
49
50 parser.add_argument("--nb_test_samples", type=int, default=None)
51
52 parser.add_argument("--optim", type=str, default="adam")
53
54 parser.add_argument("--learning_rate", type=float, default=1e-4)
55
56 parser.add_argument("--learning_rate_schedule", type=str, default="10: 2e-5,30: 4e-6")
57
58 parser.add_argument("--dim_model", type=int, default=512)
59
60 parser.add_argument("--dim_keys", type=int, default=64)
61
62 parser.add_argument("--dim_hidden", type=int, default=2048)
63
64 parser.add_argument("--nb_heads", type=int, default=8)
65
66 parser.add_argument("--nb_blocks", type=int, default=12)
67
68 parser.add_argument("--dropout", type=float, default=0.1)
69
70 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
71
72 parser.add_argument("--no_checkpoint", action="store_true", default=False)
73
74 parser.add_argument("--overwrite_results", action="store_true", default=False)
75
76 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
77
78 ##############################
79 # picoclvr options
80
81 parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
82
83 parser.add_argument("--picoclvr_height", type=int, default=12)
84
85 parser.add_argument("--picoclvr_width", type=int, default=16)
86
87 parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
88
89 ##############################
90 # Maze options
91
92 parser.add_argument("--maze_height", type=int, default=13)
93
94 parser.add_argument("--maze_width", type=int, default=21)
95
96 parser.add_argument("--maze_nb_walls", type=int, default=15)
97
98 ##############################
99 # Snake options
100
101 parser.add_argument("--snake_height", type=int, default=6)
102
103 parser.add_argument("--snake_width", type=int, default=8)
104
105 parser.add_argument("--snake_nb_colors", type=int, default=5)
106
107 parser.add_argument("--snake_length", type=int, default=200)
108
109 ##############################
110 # Snake options
111
112 parser.add_argument("--stack_nb_steps", type=int, default=100)
113
114 parser.add_argument("--stack_nb_stacks", type=int, default=1)
115
116 parser.add_argument("--stack_nb_digits", type=int, default=3)
117
118 parser.add_argument("--stack_fraction_values_for_train", type=float, default=None)
119
120 ######################################################################
121
122 args = parser.parse_args()
123
124 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
125
126 if args.result_dir is None:
127     args.result_dir = f"results_{args.task}"
128
129 ######################################################################
130
131 default_args = {
132     "picoclvr": {
133         "nb_epochs": 25,
134         "batch_size": 25,
135         "nb_train_samples": 250000,
136         "nb_test_samples": 10000,
137     },
138     "mnist": {
139         "nb_epochs": 25,
140         "batch_size": 10,
141         "nb_train_samples": 250000,
142         "nb_test_samples": 10000,
143     },
144     "maze": {
145         "nb_epochs": 25,
146         "batch_size": 25,
147         "nb_train_samples": 250000,
148         "nb_test_samples": 10000,
149     },
150     "snake": {
151         "nb_epochs": 5,
152         "batch_size": 25,
153         "nb_train_samples": 250000,
154         "nb_test_samples": 10000,
155     },
156     "stack": {
157         "nb_epochs": 5,
158         "batch_size": 25,
159         "nb_train_samples": 100000,
160         "nb_test_samples": 1000,
161     },
162     "expr": {
163         "nb_epochs": 5,
164         "batch_size": 25,
165         "nb_train_samples": 100000,
166         "nb_test_samples": 1000,
167     },
168 }
169
170 if args.task in default_args:
171     for k, v in default_args[args.task].items():
172         if getattr(args, k) is None:
173             setattr(args, k, v)
174
175 ######################################################################
176
177 try:
178     os.mkdir(args.result_dir)
179 except FileExistsError:
180     if not args.overwrite_results:
181         print(f"result directory {args.result_dir} already exists")
182         exit(1)
183
184 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
185
186 if args.seed >= 0:
187     # torch.backends.cudnn.deterministic = True
188     # torch.backends.cudnn.benchmark = False
189     # torch.use_deterministic_algorithms(True)
190     torch.manual_seed(args.seed)
191     if torch.cuda.is_available():
192         torch.cuda.manual_seed_all(args.seed)
193
194 ######################################################################
195
196
197 def log_string(s):
198     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
199
200     if log_file is not None:
201         log_file.write(t + s + "\n")
202         log_file.flush()
203
204     print(t + s)
205     sys.stdout.flush()
206
207
208 for n in vars(args):
209     log_string(f"args.{n} {getattr(args, n)}")
210
211 ######################################################################
212
213
214 # ra_mask is boolean, with 1s on the values to generate
215
216
217 def masked_inplace_autoregression(
218     model,
219     batch_size,
220     input,
221     ar_mask,
222     forbidden_tokens=None,
223     progress_bar_desc="autoregression",
224     device=torch.device("cpu"),
225 ):
226
227     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
228
229     if progress_bar_desc is not None:
230         batches = tqdm.tqdm(
231             batches,
232             dynamic_ncols=True,
233             desc=progress_bar_desc,
234             total=input.size(0) // batch_size,
235         )
236
237     for input, ar_mask in batches:
238         i = (ar_mask.sum(0) > 0).nonzero()
239         if i.min() > 0:
240             model(
241                 mygpt.BracketedSequence(input, 0, i.min())
242             )  # Needed to initialize the model's cache
243         for s in range(i.min(), i.max() + 1):
244             output = model(mygpt.BracketedSequence(input, s, 1)).x
245             logits = output[:, s]
246             if forbidden_tokens is not None:
247                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
248             if args.deterministic_synthesis:
249                 t_next = logits.argmax(1)
250             else:
251                 dist = torch.distributions.categorical.Categorical(logits=logits)
252                 t_next = dist.sample()
253             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
254
255
256 ######################################################################
257
258
259 class Task:
260     def batches(self, split="train"):
261         pass
262
263     def vocabulary_size(self):
264         pass
265
266     def produce_results(self, n_epoch, model):
267         pass
268
269
270 ######################################################################
271
272 import picoclvr
273
274
275 class TaskPicoCLVR(Task):
276     # Make a tensor from a list of strings
277     def tensorize(self, descr):
278         token_descr = [s.strip().split(" ") for s in descr]
279         l = max([len(s) for s in token_descr])
280         token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
281         id_descr = [[self.token2id[u] for u in s] for s in token_descr]
282         return torch.tensor(id_descr, device=self.device)
283
284     # Make a list of strings from a tensor
285     def detensorize(self, x):
286         return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
287
288     # trim all the tensors in the tuple z to remove as much token from
289     # left and right in the first tensor. If z is a tuple, all its
290     # elements are trimed according to the triming for the first
291     def trim(self, z, token="<nul>"):
292         n = self.token2id[token]
293         if type(z) == tuple:
294             x = z[0]
295             i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
296             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
297             return tuple([t[:, a:b] for t in z])
298         else:
299             i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
300             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
301             return z[:, a:b]
302
303     ######################
304     # Not the cleanest part of the code
305
306     # Extract the last image of each sequence, from the last <img>
307     # included, and set to <nul> all the tokens from the beginning of
308     # that image to the end
309     def excise_last_image(self, input):
310         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
311         nb_img_tokens = self.height * self.width + 1
312
313         input = input.clone()
314         t = (input == t_img).long()
315         tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long()
316         i = (t * tail_masks).nonzero(as_tuple=True)
317         j = (
318             i[0][:, None],
319             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
320         )
321         images = self.trim(input[j])
322         input[j] = t_nul
323         loss_masks = 1 - tail_masks
324         input, loss_masks = self.trim((input, loss_masks))
325         return input, loss_masks, images
326
327     def add_true_image(self, input, images, loss_masks):
328         t_nul = self.token2id["<nul>"]
329         nb_img_tokens = self.height * self.width + 1
330         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
331         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
332         t = (input == t_nul).long()
333         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
334         j = (
335             i[0][:, None],
336             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
337         )
338         input[j] = images
339         loss_masks[j] = 1
340         input, loss_masks = self.trim((input, loss_masks))
341         return input, loss_masks
342
343     def add_generated_image(self, input, loss_masks, model):
344         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
345         nb_img_tokens = self.height * self.width + 1
346
347         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
348         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
349         t = (input == t_nul).long()
350         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
351         input[i] = t_img
352
353         j = (
354             i[0][:, None],
355             i[1][:, None]
356             + 1
357             + torch.arange(nb_img_tokens - 1, device=input.device)[None, :],
358         )
359         ar_masks = input.new_zeros(input.size(), dtype=torch.int64)
360         ar_masks[j] = 1
361         forbidden_tokens = (
362             torch.arange(self.vocabulary_size(), device=input.device) == t_nul
363         )
364         with torch.autograd.no_grad():
365             t = model.training
366             model.eval()
367             masked_inplace_autoregression(
368                 model,
369                 self.batch_size,
370                 input,
371                 ar_masks,
372                 forbidden_tokens,
373                 progress_bar_desc=None,
374                 device=self.device,
375             )
376             model.train(t)
377
378         input, loss_masks = self.trim((input, loss_masks))
379
380         return input, loss_masks
381
382     ######################
383
384     def __init__(
385         self,
386         nb_train_samples,
387         nb_test_samples,
388         batch_size,
389         height,
390         width,
391         nb_colors=5,
392         device=torch.device("cpu"),
393         pruner_train=None,
394         pruner_eval=None,
395     ):
396         def generate_descr(nb, cache_suffix, pruner):
397             return picoclvr.generate(
398                 nb,
399                 height=self.height,
400                 width=self.width,
401                 nb_colors=nb_colors,
402                 pruner=pruner,
403             )
404
405         self.height = height
406         self.width = width
407         self.batch_size = batch_size
408         self.device = device
409         self.pruner_train = pruner_train
410         self.pruner_eval = pruner_eval
411
412         param = {
413             "nb_train_samples": nb_train_samples,
414             "nb_test_samples": nb_test_samples,
415             "height": height,
416             "width": width,
417             "nb_colors": nb_colors,
418             "batch_size": batch_size,
419             "rng_state": list(torch.get_rng_state()),
420         }
421
422         log_string(
423             f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
424         )
425         self.train_descr = generate_descr(
426             nb_train_samples, "train", pruner=self.pruner_train
427         )
428         self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
429
430         # Build the tokenizer
431         tokens = {"<nul>", "<img>"}
432         for d in [self.train_descr, self.test_descr]:
433             for s in d:
434                 for t in s.strip().split(" "):
435                     tokens.add(t)
436         # make this set a sorted list to get the same tensors given
437         # the same descr
438         tokens = list(tokens)
439         tokens.sort()
440         self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
441         self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
442
443         # Tokenize the train and test sets
444         self.train_input = self.tensorize(self.train_descr)
445         self.test_input = self.tensorize(self.test_descr)
446
447     def batches(self, split="train"):
448         assert split in {"train", "test"}
449         input = self.train_input if split == "train" else self.test_input
450         for batch in tqdm.tqdm(
451             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
452         ):
453             yield self.trim(batch)
454
455     def vocabulary_size(self):
456         return len(self.token2id)
457
458     def compute_missing_properties(self, n_epoch, model, pruner=None):
459         acc_nb_requested_properties = []
460         acc_nb_missing_properties = []
461         acc_nb_results = 0
462
463         for input in tqdm.tqdm(
464             self.test_input.split(self.batch_size),
465             dynamic_ncols=True,
466             desc=f"test-properties",
467         ):
468             tape, loss_masks, _ = self.excise_last_image(input)
469             tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
470             result_descr = self.detensorize(tape)
471             np = picoclvr.nb_properties(
472                 result_descr,
473                 height=self.height,
474                 width=self.width,
475                 pruner=pruner,
476             )
477             nb_requested_properties, _, nb_missing_properties = zip(*np)
478             acc_nb_requested_properties += nb_requested_properties
479             acc_nb_missing_properties += nb_missing_properties
480             acc_nb_results += len(result_descr)
481
482         nb_requested_properties = sum(acc_nb_requested_properties)
483         nb_missing_properties = sum(acc_nb_missing_properties)
484
485         prefix = "" if pruner is None else "pruned_"
486         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
487         log_string(
488             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
489         )
490         log_string(
491             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
492         )
493
494     ######################################################################
495
496     def produce_results(self, n_epoch, model):
497         self.compute_missing_properties(n_epoch, model)
498
499         if self.pruner_eval is not None:
500             self.compute_missing_properties(n_epoch, model, self.pruner_eval)
501
502         nb_tokens_to_generate = self.height * self.width + 3
503         result_descr = []
504         nb_per_primer = 8
505         primer = []
506
507         for primer_descr in [
508             "red above green <sep> green top <sep> blue right of red",
509             "there is red <sep> there is yellow <sep> there is blue",
510             "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
511             "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
512         ]:
513             primer += [primer_descr] * nb_per_primer
514
515         tape = self.tensorize(primer)
516         loss_masks = 1 - (tape == self.token2id["<nul>"]).long()
517         tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
518         result_descr = self.detensorize(tape)
519
520         np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
521
522         acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
523         acc_nb_results = len(result_descr)
524
525         nb_requested_properties = sum(acc_nb_requested_properties)
526         nb_missing_properties = sum(acc_nb_missing_properties)
527
528         prefix = "demo_"
529         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
530         log_string(
531             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
532         )
533         log_string(
534             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
535         )
536
537         img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
538
539         if img.dim() == 5:
540             if img.size(1) == 1:
541                 img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
542             else:
543                 img = torch.cat(
544                     [
545                         torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
546                         for x in img
547                     ],
548                     0,
549                 )
550
551         image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
552         torchvision.utils.save_image(
553             img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=0.0
554         )
555         log_string(f"wrote {image_name}")
556
557
558 ######################################################################
559
560
561 class TaskMNIST(Task):
562     def __init__(self, batch_size, device=torch.device("cpu")):
563         self.device = device
564         self.batch_size = batch_size
565
566     def batches(self, split="train"):
567         assert split in {"train", "test"}
568         data_set = torchvision.datasets.MNIST(
569             root="./data", train=(split == "train"), download=True
570         )
571         data_input = data_set.data.view(-1, 28 * 28).long()
572         if args.nb_train_samples is not None:
573             data_input = data_input[: args.nb_train_samples]
574         for batch in tqdm.tqdm(
575             data_input.split(self.batch_size), desc=f"epoch-{split}"
576         ):
577             yield batch
578
579     def vocabulary_size(self):
580         return 256
581
582     def produce_results(self, n_epoch, model):
583         results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
584         ar_mask = torch.full_like(results, 1)
585         masked_inplace_autoregression(
586             model, self.batch_size, results, ar_mask, device=self.device
587         )
588         image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
589         torchvision.utils.save_image(
590             1 - results.reshape(-1, 1, 28, 28) / 255.0,
591             image_name,
592             nrow=16,
593             pad_value=0.8,
594         )
595         log_string(f"wrote {image_name}")
596
597
598 ######################################################################
599
600 import maze
601
602
603 class TaskMaze(Task):
604     def map2seq(self, *m):
605         return torch.cat([x.flatten(1) for x in m], 1)
606
607     def seq2map(self, s):
608         s = s.reshape(s.size(0), -1, self.height, self.width)
609         return (s[:, k] for k in range(s.size(1)))
610
611     def __init__(
612         self,
613         nb_train_samples,
614         nb_test_samples,
615         batch_size,
616         height,
617         width,
618         nb_walls,
619         device=torch.device("cpu"),
620     ):
621         self.batch_size = batch_size
622         self.height = height
623         self.width = width
624         self.device = device
625
626         train_mazes, train_paths, _ = maze.create_maze_data(
627             nb_train_samples,
628             height=height,
629             width=width,
630             nb_walls=nb_walls,
631             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
632         )
633         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
634
635         test_mazes, test_paths, _ = maze.create_maze_data(
636             nb_test_samples,
637             height=height,
638             width=width,
639             nb_walls=nb_walls,
640             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
641         )
642         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
643
644         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
645
646     def batches(self, split="train", nb_to_use=-1, desc=None):
647         assert split in {"train", "test"}
648         input = self.train_input if split == "train" else self.test_input
649         if nb_to_use > 0:
650             input = input[:nb_to_use]
651         if desc is None:
652             desc = f"epoch-{split}"
653         for batch in tqdm.tqdm(
654             input.split(self.batch_size), dynamic_ncols=True, desc=desc
655         ):
656             yield batch
657
658     def vocabulary_size(self):
659         return self.nb_codes
660
661     def compute_error(self, model, split="train", nb_to_use=-1):
662         nb_total, nb_correct = 0, 0
663         count = torch.zeros(
664             self.width * self.height,
665             self.width * self.height,
666             device=self.device,
667             dtype=torch.int64,
668         )
669         for input in tqdm.tqdm(
670             task.batches(split, nb_to_use),
671             dynamic_ncols=True,
672             desc=f"test-mazes",
673         ):
674             result = input.clone()
675             ar_mask = result.new_zeros(result.size())
676             ar_mask[:, self.height * self.width :] = 1
677             result *= 1 - ar_mask
678             masked_inplace_autoregression(
679                 model,
680                 self.batch_size,
681                 result,
682                 ar_mask,
683                 progress_bar_desc=None,
684                 device=self.device,
685             )
686             mazes, paths = self.seq2map(result)
687             path_correctness = maze.path_correctness(mazes, paths)
688             nb_correct += path_correctness.long().sum()
689             nb_total += mazes.size(0)
690
691             optimal_path_lengths = (
692                 (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
693             )
694             predicted_path_lengths = (
695                 (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
696             )
697             optimal_path_lengths = optimal_path_lengths[path_correctness]
698             predicted_path_lengths = predicted_path_lengths[path_correctness]
699             count[optimal_path_lengths, predicted_path_lengths] += 1
700
701         if count.max() == 0:
702             count = None
703         else:
704             count = count[
705                 : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
706             ]
707
708         return nb_total, nb_correct, count
709
710     def produce_results(self, n_epoch, model):
711         with torch.autograd.no_grad():
712             t = model.training
713             model.eval()
714
715             train_nb_total, train_nb_correct, count = self.compute_error(
716                 model, "train", nb_to_use=1000
717             )
718             log_string(
719                 f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
720             )
721
722             test_nb_total, test_nb_correct, count = self.compute_error(
723                 model, "test", nb_to_use=1000
724             )
725             log_string(
726                 f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
727             )
728
729             if count is not None:
730                 proportion_optimal = count.diagonal().sum().float() / count.sum()
731                 log_string(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
732                 with open(
733                     os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
734                 ) as f:
735                     for i in range(count.size(0)):
736                         for j in range(count.size(1)):
737                             eol = " " if j < count.size(1) - 1 else "\n"
738                             f.write(f"{count[i,j]}{eol}")
739
740             input = self.test_input[:48]
741             result = input.clone()
742             ar_mask = result.new_zeros(result.size())
743             ar_mask[:, self.height * self.width :] = 1
744             result *= 1 - ar_mask
745             masked_inplace_autoregression(
746                 model, self.batch_size, result, ar_mask, device=self.device
747             )
748
749             mazes, paths = self.seq2map(input)
750             _, predicted_paths = self.seq2map(result)
751
752             filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
753             maze.save_image(
754                 filename,
755                 mazes=mazes,
756                 target_paths=paths,
757                 predicted_paths=predicted_paths,
758                 path_correct=maze.path_correctness(mazes, predicted_paths),
759                 path_optimal=maze.path_optimality(paths, predicted_paths),
760             )
761             log_string(f"wrote {filename}")
762
763             model.train(t)
764
765
766 ######################################################################
767
768
769 import snake
770
771
772 class TaskSnake(Task):
773     def __init__(
774         self,
775         nb_train_samples,
776         nb_test_samples,
777         batch_size,
778         height,
779         width,
780         nb_colors,
781         length,
782         prompt_length,
783         device=torch.device("cpu"),
784     ):
785         self.batch_size = batch_size
786         self.height = height
787         self.width = width
788         self.device = device
789         self.prompt_length = prompt_length
790
791         self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
792             nb_train_samples,
793             height,
794             width,
795             nb_colors,
796             length,
797             prompt_length,
798             self.device,
799         )
800         self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
801             nb_test_samples,
802             height,
803             width,
804             nb_colors,
805             length,
806             prompt_length,
807             self.device,
808         )
809
810         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
811
812     def batches(self, split="train", nb_to_use=-1, desc=None):
813         assert split in {"train", "test"}
814         input = self.train_input if split == "train" else self.test_input
815         if nb_to_use > 0:
816             input = input[:nb_to_use]
817         if desc is None:
818             desc = f"epoch-{split}"
819         for batch in tqdm.tqdm(
820             input.split(self.batch_size), dynamic_ncols=True, desc=desc
821         ):
822             yield batch
823
824     def vocabulary_size(self):
825         return self.nb_codes
826
827     def produce_results(self, n_epoch, model):
828         with torch.autograd.no_grad():
829             t = model.training
830             model.eval()
831
832             def compute_nb_correct(input, prior_visits):
833                 result = input.clone()
834                 i = torch.arange(result.size(1), device=result.device)[None, :]
835                 ar_mask = (
836                     torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
837                     .long()
838                     .expand_as(result)
839                 )
840                 result *= 1 - ar_mask
841
842                 # snake.solver(result,ar_mask)
843
844                 masked_inplace_autoregression(
845                     model, self.batch_size, result, ar_mask, device=self.device
846                 )
847
848                 nb_total = ((prior_visits > 0) * ar_mask).sum()
849
850                 nb_correct = (
851                     (result == input).long() * (prior_visits > 0) * ar_mask
852                 ).sum()
853
854                 # nb_total = result.size(0)
855                 # nb_correct = ((result - input).abs().sum(1) == 0).sum()
856
857                 return nb_total, nb_correct
858
859             # train_nb_total, train_nb_correct = compute_nb_correct(
860             # self.train_input, self.train_prior_visits
861             # )
862
863             # log_string(
864             # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
865             # )
866
867             test_nb_total, test_nb_correct = compute_nb_correct(
868                 self.test_input[:1000], self.test_prior_visits[:1000]
869             )
870
871             log_string(
872                 f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
873             )
874
875             model.train(t)
876
877
878 ######################################################################
879
880
881 import stack
882
883
884 class TaskStack(Task):
885     def __init__(
886         self,
887         nb_train_samples,
888         nb_test_samples,
889         batch_size,
890         nb_steps,
891         nb_stacks,
892         nb_digits,
893         fraction_values_for_train=None,
894         device=torch.device("cpu"),
895     ):
896         self.batch_size = batch_size
897         self.nb_steps = nb_steps
898         self.nb_stacks = nb_stacks
899         self.nb_digits = nb_digits
900         self.device = device
901
902         if fraction_values_for_train is None:
903             values_for_train = None
904             values_for_test = None
905         else:
906             all = torch.randperm(10**nb_digits)
907             nb_for_train = int(all.size(0) * fraction_values_for_train)
908             values_for_train = all[:nb_for_train]
909             values_for_test = all[nb_for_train:]
910
911         self.train_input, self.train_stack_counts = stack.generate_sequences(
912             nb_train_samples,
913             nb_steps,
914             nb_stacks,
915             nb_digits,
916             values_for_train,
917             self.device,
918         )
919
920         self.test_input, self.test_stack_counts = stack.generate_sequences(
921             nb_test_samples,
922             nb_steps,
923             nb_stacks,
924             nb_digits,
925             values_for_test,
926             self.device,
927         )
928
929         i = torch.logical_and(self.test_input % 2 == 1, self.test_input < 2 * nb_stacks)
930         counts = self.test_stack_counts.flatten()[i.flatten()]
931         counts = F.one_hot(counts).sum(0)
932         log_string(f"test_pop_stack_counts {counts}")
933
934         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
935
936     def batches(self, split="train", nb_to_use=-1, desc=None):
937         assert split in {"train", "test"}
938         input = self.train_input if split == "train" else self.test_input
939         if nb_to_use > 0:
940             input = input[:nb_to_use]
941         if desc is None:
942             desc = f"epoch-{split}"
943         for batch in tqdm.tqdm(
944             input.split(self.batch_size), dynamic_ncols=True, desc=desc
945         ):
946             yield batch
947
948     def vocabulary_size(self):
949         return self.nb_codes
950
951     def produce_results(self, n_epoch, model):
952         with torch.autograd.no_grad():
953             t = model.training
954             model.eval()
955
956             def compute_nb_correct(input):
957                 result = input.clone()
958                 stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
959                 ar_mask = (result != input).long()
960                 masked_inplace_autoregression(
961                     model, self.batch_size, result, ar_mask, device=self.device
962                 )
963
964                 errors = ((result != input).long() * ar_mask).reshape(
965                     -1, 1 + self.nb_digits
966                 )
967                 ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
968
969                 nb_total = ar_mask.max(1).values.sum()
970                 nb_correct = nb_total - errors.max(1).values.sum()
971
972                 return nb_total, nb_correct
973
974             test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
975
976             log_string(
977                 f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
978             )
979
980             ##############################################################
981             # Log a few generated sequences
982             input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
983             result = input.clone()
984             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
985             ar_mask = (result != input).long()
986             for n in range(result.size(0)):
987                 log_string(
988                     f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
989                 )
990             masked_inplace_autoregression(
991                 model, self.batch_size, result, ar_mask, device=self.device
992             )
993             for n in range(result.size(0)):
994                 log_string(
995                     f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
996                 )
997             ##############################################################
998
999             model.train(t)
1000
1001
1002 ######################################################################
1003
1004
1005 import expr
1006
1007
1008 class TaskExpr(Task):
1009     def __init__(
1010         self,
1011         nb_train_samples,
1012         nb_test_samples,
1013         batch_size,
1014         device=torch.device("cpu"),
1015     ):
1016         self.batch_size = batch_size
1017         self.device = device
1018
1019         train_sequences = expr.generate_sequences(nb_train_samples)
1020         test_sequences = expr.generate_sequences(nb_test_samples)
1021         self.char2id = dict([ (c,n) for n,c in enumerate(set("".join(train_sequences + test_sequences))) ])
1022         self.id2char = dict([ (n,c) for n,c in self.char2id.items() ])
1023         len_max = max([len(x) for x in train_sequences + test_sequences])
1024         self.train_input = torch.cat([torch.tensor([char2id(c) for c in s + " "*(len_max-len(s))] for s in train_sequences)], 0)
1025         self.test_input = torch.cat([torch.tensor([char2id(c) for c in s + " "*(len_max-len(s))] for s in test_sequences)], 0)
1026         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
1027
1028     def batches(self, split="train", nb_to_use=-1, desc=None):
1029         assert split in {"train", "test"}
1030         input = self.train_input if split == "train" else self.test_input
1031         if nb_to_use > 0:
1032             input = input[:nb_to_use]
1033         if desc is None:
1034             desc = f"epoch-{split}"
1035         for batch in tqdm.tqdm(
1036             input.split(self.batch_size), dynamic_ncols=True, desc=desc
1037         ):
1038             yield batch
1039
1040     def vocabulary_size(self):
1041         return self.nb_codes
1042
1043     def produce_results(self, n_epoch, model):
1044         # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1045         with torch.autograd.no_grad():
1046             t = model.training
1047             model.eval()
1048
1049             def compute_nb_correct(input):
1050                 result = input.clone()
1051                 stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
1052                 ar_mask = (result != input).long()
1053                 masked_inplace_autoregression(
1054                     model, self.batch_size, result, ar_mask, device=self.device
1055                 )
1056
1057                 errors = ((result != input).long() * ar_mask).reshape(
1058                     -1, 1 + self.nb_digits
1059                 )
1060                 ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
1061
1062                 nb_total = ar_mask.max(1).values.sum()
1063                 nb_correct = nb_total - errors.max(1).values.sum()
1064
1065                 return nb_total, nb_correct
1066
1067             test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
1068
1069             log_string(
1070                 f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
1071             )
1072
1073             ##############################################################
1074             # Log a few generated sequences
1075             input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
1076             result = input.clone()
1077             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
1078             ar_mask = (result != input).long()
1079             for n in range(result.size(0)):
1080                 log_string(
1081                     f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
1082                 )
1083             masked_inplace_autoregression(
1084                 model, self.batch_size, result, ar_mask, device=self.device
1085             )
1086             for n in range(result.size(0)):
1087                 log_string(
1088                     f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
1089                 )
1090             ##############################################################
1091
1092             model.train(t)
1093
1094
1095 ######################################################################
1096
1097
1098 def picoclvr_pruner_horizontal_green(p):
1099     return not ("green" in p and ("left" in p or "right" in p))
1100
1101
1102 picoclvr_pruner_train = (
1103     picoclvr_pruner_horizontal_green
1104     if args.picocvlr_prune_properties in {"train+eval"}
1105     else None
1106 )
1107
1108 picoclvr_pruner_eval = (
1109     (lambda p: not picoclvr_pruner_horizontal_green(p))
1110     if args.picocvlr_prune_properties in {"train+eval", "eval"}
1111     else None
1112 )
1113
1114 ######################################################################
1115
1116 if args.task == "picoclvr":
1117     task = TaskPicoCLVR(
1118         nb_train_samples=args.nb_train_samples,
1119         nb_test_samples=args.nb_test_samples,
1120         batch_size=args.batch_size,
1121         height=args.picoclvr_height,
1122         width=args.picoclvr_width,
1123         nb_colors=args.picoclvr_nb_colors,
1124         device=device,
1125         pruner_train=picoclvr_pruner_train,
1126         pruner_eval=picoclvr_pruner_eval,
1127     )
1128
1129 elif args.task == "mnist":
1130     task = TaskMNIST(
1131         batch_size=args.batch_size,
1132         device=device,
1133     )
1134
1135 elif args.task == "maze":
1136     task = TaskMaze(
1137         nb_train_samples=args.nb_train_samples,
1138         nb_test_samples=args.nb_test_samples,
1139         batch_size=args.batch_size,
1140         height=args.maze_height,
1141         width=args.maze_width,
1142         nb_walls=args.maze_nb_walls,
1143         device=device,
1144     )
1145
1146 elif args.task == "snake":
1147     task = TaskSnake(
1148         nb_train_samples=args.nb_train_samples,
1149         nb_test_samples=args.nb_test_samples,
1150         batch_size=args.batch_size,
1151         height=args.snake_height,
1152         width=args.snake_width,
1153         nb_colors=args.snake_nb_colors,
1154         length=args.snake_length,
1155         prompt_length=args.snake_length // 2,
1156         device=device,
1157     )
1158
1159 elif args.task == "stack":
1160     task = TaskStack(
1161         nb_train_samples=args.nb_train_samples,
1162         nb_test_samples=args.nb_test_samples,
1163         batch_size=args.batch_size,
1164         nb_steps=args.stack_nb_steps,
1165         nb_stacks=args.stack_nb_stacks,
1166         nb_digits=args.stack_nb_digits,
1167         fraction_values_for_train=args.stack_fraction_values_for_train,
1168         device=device,
1169     )
1170
1171 elif args.task == "expr":
1172     task = TaskExpr(
1173         nb_train_samples=args.nb_train_samples,
1174         nb_test_samples=args.nb_test_samples,
1175         batch_size=args.batch_size,
1176         device=device,
1177     )
1178
1179 else:
1180     raise ValueError(f"Unknown task {args.task}")
1181
1182 ######################################################################
1183
1184 log_string(f"device {device}")
1185
1186 vocabulary_size = task.vocabulary_size()
1187
1188 log_string(f"vocabulary_size {vocabulary_size}")
1189
1190 ##############################
1191
1192 model = mygpt.MyGPT(
1193     vocabulary_size=vocabulary_size,
1194     dim_model=args.dim_model,
1195     dim_keys=args.dim_keys,
1196     dim_hidden=args.dim_hidden,
1197     nb_heads=args.nb_heads,
1198     nb_blocks=args.nb_blocks,
1199     causal=True,
1200     dropout=args.dropout,
1201 )
1202
1203 model.to(device)
1204
1205 nb_parameters = sum(p.numel() for p in model.parameters())
1206 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
1207
1208 ######################################################################
1209
1210 nb_epochs_finished = 0
1211
1212 if args.no_checkpoint:
1213     log_string(f"not trying to load checkpoint.")
1214
1215 else:
1216     try:
1217         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1218         checkpoint = torch.load(checkpoint_name)
1219         nb_epochs_finished = checkpoint["nb_epochs_finished"]
1220         model.load_state_dict(checkpoint["model_state"])
1221         torch.set_rng_state(checkpoint["rng_state"])
1222         if torch.cuda.is_available():
1223             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
1224
1225         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
1226
1227     except FileNotFoundError:
1228         log_string("starting from scratch.")
1229
1230     except:
1231         log_string("error when loading the checkpoint.")
1232         exit(1)
1233
1234 ######################################################################
1235
1236 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
1237
1238 token_count = 0
1239 for input in task.batches(split="train"):
1240     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
1241 token_probas = token_count / token_count.sum()
1242 entropy = -torch.xlogy(token_probas, token_probas).sum()
1243 train_set_perplexity = math.exp(entropy)
1244
1245 ##############################
1246
1247 if args.learning_rate_schedule == "cos":
1248     learning_rate_schedule = {}
1249     for n_epoch in range(args.nb_epochs):
1250         u = n_epoch / args.nb_epochs * math.pi
1251         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
1252 else:
1253     u = {
1254         int(k): float(v)
1255         for k, v in [
1256             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
1257         ]
1258     }
1259
1260     learning_rate_schedule = {}
1261     learning_rate = args.learning_rate
1262     for n_epoch in range(args.nb_epochs):
1263         if n_epoch in u:
1264             learning_rate = u[n_epoch]
1265         learning_rate_schedule[n_epoch] = learning_rate
1266
1267 log_string(f"learning_rate_schedule {learning_rate_schedule}")
1268
1269 ##############################
1270
1271 nb_samples_seen = 0
1272
1273 if nb_epochs_finished >= nb_epochs:
1274     task.produce_results(nb_epochs_finished, model)
1275
1276 for n_epoch in range(nb_epochs_finished, nb_epochs):
1277     learning_rate = learning_rate_schedule[n_epoch]
1278
1279     log_string(f"learning_rate {learning_rate}")
1280
1281     if args.optim == "sgd":
1282         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
1283     elif args.optim == "adam":
1284         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
1285     elif args.optim == "adamw":
1286         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
1287     else:
1288         raise ValueError(f"Unknown optimizer {args.optim}.")
1289
1290     model.train()
1291
1292     nb_train_samples, acc_train_loss = 0, 0.0
1293
1294     for input in task.batches(split="train"):
1295         input = input.to(device)
1296         output = model(mygpt.BracketedSequence(input)).x
1297         loss = F.cross_entropy(output.transpose(1, 2), input)
1298         acc_train_loss += loss.item() * input.size(0)
1299         nb_train_samples += input.size(0)
1300         nb_samples_seen += input.size(0)
1301
1302         optimizer.zero_grad()
1303         loss.backward()
1304         optimizer.step()
1305
1306     with torch.autograd.no_grad():
1307         model.eval()
1308
1309         nb_test_samples, acc_test_loss = 0, 0.0
1310
1311         for input in task.batches(split="test"):
1312             input = input.to(device)
1313
1314             output = model(mygpt.BracketedSequence(input)).x
1315             loss = F.cross_entropy(output.transpose(1, 2), input)
1316             acc_test_loss += loss.item() * input.size(0)
1317             nb_test_samples += input.size(0)
1318
1319         train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
1320         test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
1321
1322         log_string(
1323             f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
1324         )
1325
1326         task.produce_results(n_epoch, model)
1327
1328     checkpoint = {
1329         "nb_epochs_finished": n_epoch + 1,
1330         "model_state": model.state_dict(),
1331         "rng_state": torch.get_rng_state(),
1332     }
1333
1334     if torch.cuda.is_available():
1335         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
1336
1337     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1338     torch.save(checkpoint, checkpoint_name)
1339     log_string(f"saved checkpoint {checkpoint_name}")
1340
1341 ######################################################################