4770a125172cf77a41aada959ef5f18b44517be4
[picoclvr.git] / main.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(
30     description="An implementation of GPT with cache.",
31     formatter_class=argparse.ArgumentDefaultsHelpFormatter,
32 )
33
34 parser.add_argument(
35     "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake, stack"
36 )
37
38 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
39
40 parser.add_argument("--result_dir", type=str, default=None)
41
42 parser.add_argument("--seed", type=int, default=0)
43
44 parser.add_argument("--nb_epochs", type=int, default=None)
45
46 parser.add_argument("--batch_size", type=int, default=None)
47
48 parser.add_argument("--nb_train_samples", type=int, default=None)
49
50 parser.add_argument("--nb_test_samples", type=int, default=None)
51
52 parser.add_argument("--optim", type=str, default="adam")
53
54 parser.add_argument("--learning_rate", type=float, default=1e-4)
55
56 parser.add_argument("--learning_rate_schedule", type=str, default="10: 2e-5,30: 4e-6")
57
58 parser.add_argument("--dim_model", type=int, default=512)
59
60 parser.add_argument("--dim_keys", type=int, default=64)
61
62 parser.add_argument("--dim_hidden", type=int, default=2048)
63
64 parser.add_argument("--nb_heads", type=int, default=8)
65
66 parser.add_argument("--nb_blocks", type=int, default=12)
67
68 parser.add_argument("--dropout", type=float, default=0.1)
69
70 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
71
72 parser.add_argument("--no_checkpoint", action="store_true", default=False)
73
74 parser.add_argument("--overwrite_results", action="store_true", default=False)
75
76 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
77
78 ##############################
79 # picoclvr options
80
81 parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
82
83 parser.add_argument("--picoclvr_height", type=int, default=12)
84
85 parser.add_argument("--picoclvr_width", type=int, default=16)
86
87 parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
88
89 ##############################
90 # Maze options
91
92 parser.add_argument("--maze_height", type=int, default=13)
93
94 parser.add_argument("--maze_width", type=int, default=21)
95
96 parser.add_argument("--maze_nb_walls", type=int, default=15)
97
98 ##############################
99 # Snake options
100
101 parser.add_argument("--snake_height", type=int, default=6)
102
103 parser.add_argument("--snake_width", type=int, default=8)
104
105 parser.add_argument("--snake_nb_colors", type=int, default=5)
106
107 parser.add_argument("--snake_length", type=int, default=200)
108
109 ##############################
110 # Snake options
111
112 parser.add_argument("--stack_nb_steps", type=int, default=100)
113
114 parser.add_argument("--stack_nb_stacks", type=int, default=1)
115
116 parser.add_argument("--stack_nb_digits", type=int, default=3)
117
118 parser.add_argument("--stack_fraction_values_for_train", type=float, default=None)
119
120 ######################################################################
121
122 args = parser.parse_args()
123
124 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
125
126 if args.result_dir is None: args.result_dir=f"results_{args.task}"
127
128 try:
129     os.mkdir(args.result_dir)
130 except FileExistsError:
131     if not args.overwrite_results:
132         print(f"result directory {args.result_dir} already exists")
133         exit(1)
134
135 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
136
137 if args.seed >= 0:
138     # torch.backends.cudnn.deterministic = True
139     # torch.backends.cudnn.benchmark = False
140     # torch.use_deterministic_algorithms(True)
141     torch.manual_seed(args.seed)
142     if torch.cuda.is_available():
143         torch.cuda.manual_seed_all(args.seed)
144
145 ######################################################################
146
147 default_args = {
148     "picoclvr": {
149         "nb_epochs": 25,
150         "batch_size": 25,
151         "nb_train_samples": 250000,
152         "nb_test_samples": 10000,
153     },
154     "mnist": {
155         "nb_epochs": 25,
156         "batch_size": 10,
157         "nb_train_samples": 250000,
158         "nb_test_samples": 10000,
159     },
160     "maze": {
161         "nb_epochs": 25,
162         "batch_size": 25,
163         "nb_train_samples": 250000,
164         "nb_test_samples": 10000,
165     },
166     "snake": {
167         "nb_epochs": 5,
168         "batch_size": 25,
169         "nb_train_samples": 250000,
170         "nb_test_samples": 10000,
171     },
172     "stack": {
173         "nb_epochs": 5,
174         "batch_size": 25,
175         "nb_train_samples": 100000,
176         "nb_test_samples": 1000,
177     },
178 }
179
180 if args.task in default_args:
181     for k, v in default_args[args.task].items():
182         if getattr(args, k) is None:
183             setattr(args, k, v)
184
185 ######################################################################
186
187
188 def log_string(s):
189     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
190
191     if log_file is not None:
192         log_file.write(t + s + "\n")
193         log_file.flush()
194
195     print(t + s)
196     sys.stdout.flush()
197
198
199 for n in vars(args):
200     log_string(f"args.{n} {getattr(args, n)}")
201
202 ######################################################################
203
204
205 # ra_mask is boolean, with 1s on the values to generate
206
207
208 def masked_inplace_autoregression(
209     model,
210     batch_size,
211     input,
212     ar_mask,
213     forbidden_tokens=None,
214     progress_bar_desc="autoregression",
215     device=torch.device("cpu"),
216 ):
217     # p = logits.softmax(1)
218     # entropy[:,s]= p.xlogy(p).sum(1) / math.log(2)
219     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
220     if progress_bar_desc is not None:
221         batches = tqdm.tqdm(
222             batches,
223             dynamic_ncols=True,
224             desc=progress_bar_desc,
225             total=input.size(0) // batch_size,
226         )
227     for input, ar_mask in batches:
228         i = (ar_mask.sum(0) > 0).nonzero()
229         if i.min() > 0:
230             model(
231                 mygpt.BracketedSequence(input, 0, i.min())
232             )  # Needed to initialize the model's cache
233         for s in range(i.min(), i.max() + 1):
234             output = model(mygpt.BracketedSequence(input, s, 1)).x
235             logits = output[:, s]
236             if forbidden_tokens is not None:
237                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
238             if args.deterministic_synthesis:
239                 t_next = logits.argmax(1)
240             else:
241                 dist = torch.distributions.categorical.Categorical(logits=logits)
242                 t_next = dist.sample()
243             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
244
245
246 ######################################################################
247
248
249 class Task:
250     def batches(self, split="train"):
251         pass
252
253     def vocabulary_size(self):
254         pass
255
256     def produce_results(self, n_epoch, model):
257         pass
258
259
260 ######################################################################
261
262 import picoclvr
263
264
265 class TaskPicoCLVR(Task):
266     # Make a tensor from a list of strings
267     def tensorize(self, descr):
268         token_descr = [s.strip().split(" ") for s in descr]
269         l = max([len(s) for s in token_descr])
270         token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
271         id_descr = [[self.token2id[u] for u in s] for s in token_descr]
272         return torch.tensor(id_descr, device=self.device)
273
274     # Make a list of strings from a tensor
275     def detensorize(self, x):
276         return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
277
278     # trim all the tensors in the tuple z to remove as much token from
279     # left and right in the first tensor. If z is a tuple, all its
280     # elements are trimed according to the triming for the first
281     def trim(self, z, token="<nul>"):
282         n = self.token2id[token]
283         if type(z) == tuple:
284             x = z[0]
285             i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
286             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
287             return tuple([t[:, a:b] for t in z])
288         else:
289             i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
290             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
291             return z[:, a:b]
292
293     ######################
294     # Not the cleanest part of the code
295
296     # Extract the last image of each sequence, from the last <img>
297     # included, and set to <nul> all the tokens from the beginning of
298     # that image to the end
299     def excise_last_image(self, input):
300         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
301         nb_img_tokens = self.height * self.width + 1
302
303         input = input.clone()
304         t = (input == t_img).long()
305         tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long()
306         i = (t * tail_masks).nonzero(as_tuple=True)
307         j = (
308             i[0][:, None],
309             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
310         )
311         images = self.trim(input[j])
312         input[j] = t_nul
313         loss_masks = 1 - tail_masks
314         input, loss_masks = self.trim((input, loss_masks))
315         return input, loss_masks, images
316
317     def add_true_image(self, input, images, loss_masks):
318         t_nul = self.token2id["<nul>"]
319         nb_img_tokens = self.height * self.width + 1
320         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
321         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
322         t = (input == t_nul).long()
323         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
324         j = (
325             i[0][:, None],
326             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
327         )
328         input[j] = images
329         loss_masks[j] = 1
330         input, loss_masks = self.trim((input, loss_masks))
331         return input, loss_masks
332
333     def add_generated_image(self, input, loss_masks, model):
334         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
335         nb_img_tokens = self.height * self.width + 1
336
337         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
338         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
339         t = (input == t_nul).long()
340         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
341         input[i] = t_img
342
343         j = (
344             i[0][:, None],
345             i[1][:, None]
346             + 1
347             + torch.arange(nb_img_tokens - 1, device=input.device)[None, :],
348         )
349         ar_masks = input.new_zeros(input.size(), dtype=torch.int64)
350         ar_masks[j] = 1
351         forbidden_tokens = (
352             torch.arange(self.vocabulary_size(), device=input.device) == t_nul
353         )
354         with torch.autograd.no_grad():
355             t = model.training
356             model.eval()
357             masked_inplace_autoregression(
358                 model,
359                 self.batch_size,
360                 input,
361                 ar_masks,
362                 forbidden_tokens,
363                 progress_bar_desc=None,
364                 device=self.device,
365             )
366             model.train(t)
367
368         input, loss_masks = self.trim((input, loss_masks))
369
370         return input, loss_masks
371
372     ######################
373
374     def __init__(
375         self,
376         nb_train_samples,
377         nb_test_samples,
378         batch_size,
379         height,
380         width,
381         nb_colors=5,
382         device=torch.device("cpu"),
383         pruner_train=None,
384         pruner_eval=None,
385     ):
386         def generate_descr(nb, cache_suffix, pruner):
387             return picoclvr.generate(
388                 nb,
389                 height=self.height,
390                 width=self.width,
391                 nb_colors=nb_colors,
392                 pruner=pruner,
393             )
394
395         self.height = height
396         self.width = width
397         self.batch_size = batch_size
398         self.device = device
399         self.pruner_train = pruner_train
400         self.pruner_eval = pruner_eval
401
402         param = {
403             "nb_train_samples": nb_train_samples,
404             "nb_test_samples": nb_test_samples,
405             "height": height,
406             "width": width,
407             "nb_colors": nb_colors,
408             "batch_size": batch_size,
409             "rng_state": list(torch.get_rng_state()),
410         }
411
412         log_string(
413             f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
414         )
415         self.train_descr = generate_descr(
416             nb_train_samples, "train", pruner=self.pruner_train
417         )
418         self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
419
420         # Build the tokenizer
421         tokens = {"<nul>", "<img>"}
422         for d in [self.train_descr, self.test_descr]:
423             for s in d:
424                 for t in s.strip().split(" "):
425                     tokens.add(t)
426         # make this set a sorted list to get the same tensors given
427         # the same descr
428         tokens = list(tokens)
429         tokens.sort()
430         self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
431         self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
432
433         # Tokenize the train and test sets
434         self.train_input = self.tensorize(self.train_descr)
435         self.test_input = self.tensorize(self.test_descr)
436
437     def batches(self, split="train"):
438         assert split in {"train", "test"}
439         input = self.train_input if split == "train" else self.test_input
440         for batch in tqdm.tqdm(
441             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
442         ):
443             yield self.trim(batch)
444
445     def vocabulary_size(self):
446         return len(self.token2id)
447
448     def compute_missing_properties(self, n_epoch, model, pruner=None):
449         acc_nb_requested_properties = []
450         acc_nb_missing_properties = []
451         acc_nb_results = 0
452
453         for input in tqdm.tqdm(
454             self.test_input.split(self.batch_size),
455             dynamic_ncols=True,
456             desc=f"test-properties",
457         ):
458             tape, loss_masks, _ = self.excise_last_image(input)
459             tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
460             result_descr = self.detensorize(tape)
461             np = picoclvr.nb_properties(
462                 result_descr,
463                 height=self.height,
464                 width=self.width,
465                 pruner=pruner,
466             )
467             nb_requested_properties, _, nb_missing_properties = zip(*np)
468             acc_nb_requested_properties += nb_requested_properties
469             acc_nb_missing_properties += nb_missing_properties
470             acc_nb_results += len(result_descr)
471
472         nb_requested_properties = sum(acc_nb_requested_properties)
473         nb_missing_properties = sum(acc_nb_missing_properties)
474
475         prefix = "" if pruner is None else "pruned_"
476         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
477         log_string(
478             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
479         )
480         log_string(
481             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
482         )
483
484     ######################################################################
485
486     def produce_results(self, n_epoch, model):
487         self.compute_missing_properties(n_epoch, model)
488
489         if self.pruner_eval is not None:
490             self.compute_missing_properties(n_epoch, model, self.pruner_eval)
491
492         nb_tokens_to_generate = self.height * self.width + 3
493         result_descr = []
494         nb_per_primer = 8
495         primer = []
496
497         for primer_descr in [
498             "red above green <sep> green top <sep> blue right of red",
499             "there is red <sep> there is yellow <sep> there is blue",
500             "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
501             "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
502         ]:
503             primer += [primer_descr] * nb_per_primer
504
505         tape = self.tensorize(primer)
506         loss_masks = 1 - (tape == self.token2id["<nul>"]).long()
507         tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
508         result_descr = self.detensorize(tape)
509
510         np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
511
512         acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
513         acc_nb_results = len(result_descr)
514
515         nb_requested_properties = sum(acc_nb_requested_properties)
516         nb_missing_properties = sum(acc_nb_missing_properties)
517
518         prefix = "demo_"
519         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
520         log_string(
521             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
522         )
523         log_string(
524             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
525         )
526
527         img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
528
529         if img.dim() == 5:
530             if img.size(1) == 1:
531                 img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
532             else:
533                 img = torch.cat(
534                     [
535                         torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
536                         for x in img
537                     ],
538                     0,
539                 )
540
541         image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
542         torchvision.utils.save_image(
543             img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=0.0
544         )
545         log_string(f"wrote {image_name}")
546
547
548 ######################################################################
549
550
551 class TaskMNIST(Task):
552     def __init__(self, batch_size, device=torch.device("cpu")):
553         self.device = device
554         self.batch_size = batch_size
555
556     def batches(self, split="train"):
557         assert split in {"train", "test"}
558         data_set = torchvision.datasets.MNIST(
559             root="./data", train=(split == "train"), download=True
560         )
561         data_input = data_set.data.view(-1, 28 * 28).long()
562         if args.nb_train_samples is not None:
563             data_input = data_input[: args.nb_train_samples]
564         for batch in tqdm.tqdm(
565             data_input.split(self.batch_size), desc=f"epoch-{split}"
566         ):
567             yield batch
568
569     def vocabulary_size(self):
570         return 256
571
572     def produce_results(self, n_epoch, model):
573         results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
574         ar_mask = torch.full_like(results, 1)
575         masked_inplace_autoregression(
576             model, self.batch_size, results, ar_mask, device=self.device
577         )
578         image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
579         torchvision.utils.save_image(
580             1 - results.reshape(-1, 1, 28, 28) / 255.0,
581             image_name,
582             nrow=16,
583             pad_value=0.8,
584         )
585         log_string(f"wrote {image_name}")
586
587
588 ######################################################################
589
590 import maze
591
592
593 class TaskMaze(Task):
594     def map2seq(self, *m):
595         return torch.cat([x.flatten(1) for x in m], 1)
596
597     def seq2map(self, s):
598         s = s.reshape(s.size(0), -1, self.height, self.width)
599         return (s[:, k] for k in range(s.size(1)))
600
601     def __init__(
602         self,
603         nb_train_samples,
604         nb_test_samples,
605         batch_size,
606         height,
607         width,
608         nb_walls,
609         device=torch.device("cpu"),
610     ):
611         self.batch_size = batch_size
612         self.height = height
613         self.width = width
614         self.device = device
615
616         train_mazes, train_paths, _ = maze.create_maze_data(
617             nb_train_samples,
618             height=height,
619             width=width,
620             nb_walls=nb_walls,
621             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
622         )
623         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
624
625         test_mazes, test_paths, _ = maze.create_maze_data(
626             nb_test_samples,
627             height=height,
628             width=width,
629             nb_walls=nb_walls,
630             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
631         )
632         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
633
634         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
635
636     def batches(self, split="train", nb_to_use=-1, desc=None):
637         assert split in {"train", "test"}
638         input = self.train_input if split == "train" else self.test_input
639         if nb_to_use > 0:
640             input = input[:nb_to_use]
641         if desc is None:
642             desc = f"epoch-{split}"
643         for batch in tqdm.tqdm(
644             input.split(self.batch_size), dynamic_ncols=True, desc=desc
645         ):
646             yield batch
647
648     def vocabulary_size(self):
649         return self.nb_codes
650
651     def compute_error(self, model, split="train", nb_to_use=-1):
652         nb_total, nb_correct = 0, 0
653         count = torch.zeros(
654             self.width * self.height,
655             self.width * self.height,
656             device=self.device,
657             dtype=torch.int64,
658         )
659         for input in tqdm.tqdm(
660             task.batches(split, nb_to_use),
661             dynamic_ncols=True,
662             desc=f"test-mazes",
663         ):
664             result = input.clone()
665             ar_mask = result.new_zeros(result.size())
666             ar_mask[:, self.height * self.width :] = 1
667             result *= 1 - ar_mask
668             masked_inplace_autoregression(
669                 model,
670                 self.batch_size,
671                 result,
672                 ar_mask,
673                 progress_bar_desc=None,
674                 device=self.device,
675             )
676             mazes, paths = self.seq2map(result)
677             path_correctness = maze.path_correctness(mazes, paths)
678             nb_correct += path_correctness.long().sum()
679             nb_total += mazes.size(0)
680
681             optimal_path_lengths = (
682                 (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
683             )
684             predicted_path_lengths = (
685                 (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
686             )
687             optimal_path_lengths = optimal_path_lengths[path_correctness]
688             predicted_path_lengths = predicted_path_lengths[path_correctness]
689             count[optimal_path_lengths, predicted_path_lengths] += 1
690
691         if count.max() == 0:
692             count = None
693         else:
694             count = count[
695                 : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
696             ]
697
698         return nb_total, nb_correct, count
699
700     def produce_results(self, n_epoch, model):
701         with torch.autograd.no_grad():
702             t = model.training
703             model.eval()
704
705             train_nb_total, train_nb_correct, count = self.compute_error(
706                 model, "train", nb_to_use=1000
707             )
708             log_string(
709                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
710             )
711
712             test_nb_total, test_nb_correct, count = self.compute_error(
713                 model, "test", nb_to_use=1000
714             )
715             log_string(
716                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
717             )
718
719             if count is not None:
720                 proportion_optimal = count.diagonal().sum().float() / count.sum()
721                 log_string(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
722                 with open(
723                     os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
724                 ) as f:
725                     for i in range(count.size(0)):
726                         for j in range(count.size(1)):
727                             eol = " " if j < count.size(1) - 1 else "\n"
728                             f.write(f"{count[i,j]}{eol}")
729
730             input = self.test_input[:48]
731             result = input.clone()
732             ar_mask = result.new_zeros(result.size())
733             ar_mask[:, self.height * self.width :] = 1
734             result *= 1 - ar_mask
735             masked_inplace_autoregression(
736                 model, self.batch_size, result, ar_mask, device=self.device
737             )
738
739             mazes, paths = self.seq2map(input)
740             _, predicted_paths = self.seq2map(result)
741
742             filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
743             maze.save_image(
744                 filename,
745                 mazes=mazes,
746                 target_paths=paths,
747                 predicted_paths=predicted_paths,
748                 path_correct=maze.path_correctness(mazes, predicted_paths),
749                 path_optimal=maze.path_optimality(paths, predicted_paths),
750             )
751             log_string(f"wrote {filename}")
752
753             model.train(t)
754
755
756 ######################################################################
757
758
759 import snake
760
761
762 class TaskSnake(Task):
763     def __init__(
764         self,
765         nb_train_samples,
766         nb_test_samples,
767         batch_size,
768         height,
769         width,
770         nb_colors,
771         length,
772         prompt_length,
773         device=torch.device("cpu"),
774     ):
775         self.batch_size = batch_size
776         self.height = height
777         self.width = width
778         self.device = device
779         self.prompt_length = prompt_length
780
781         self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
782             nb_train_samples,
783             height,
784             width,
785             nb_colors,
786             length,
787             prompt_length,
788             self.device,
789         )
790         self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
791             nb_test_samples,
792             height,
793             width,
794             nb_colors,
795             length,
796             prompt_length,
797             self.device,
798         )
799
800         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
801
802     def batches(self, split="train", nb_to_use=-1, desc=None):
803         assert split in {"train", "test"}
804         input = self.train_input if split == "train" else self.test_input
805         if nb_to_use > 0:
806             input = input[:nb_to_use]
807         if desc is None:
808             desc = f"epoch-{split}"
809         for batch in tqdm.tqdm(
810             input.split(self.batch_size), dynamic_ncols=True, desc=desc
811         ):
812             yield batch
813
814     def vocabulary_size(self):
815         return self.nb_codes
816
817     def produce_results(self, n_epoch, model):
818         with torch.autograd.no_grad():
819             t = model.training
820             model.eval()
821
822             def compute_nb_correct(input, prior_visits):
823                 result = input.clone()
824                 i = torch.arange(result.size(1), device=result.device)[None, :]
825                 ar_mask = (
826                     torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
827                     .long()
828                     .expand_as(result)
829                 )
830                 result *= 1 - ar_mask
831
832                 # snake.solver(result,ar_mask)
833
834                 masked_inplace_autoregression(
835                     model, self.batch_size, result, ar_mask, device=self.device
836                 )
837
838                 nb_total = ((prior_visits > 0) * ar_mask).sum()
839
840                 nb_correct = (
841                     (result == input).long() * (prior_visits > 0) * ar_mask
842                 ).sum()
843
844                 # nb_total = result.size(0)
845                 # nb_correct = ((result - input).abs().sum(1) == 0).sum()
846
847                 return nb_total, nb_correct
848
849             # train_nb_total, train_nb_correct = compute_nb_correct(
850             # self.train_input, self.train_prior_visits
851             # )
852
853             # log_string(
854             # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
855             # )
856
857             test_nb_total, test_nb_correct = compute_nb_correct(
858                 self.test_input[:1000], self.test_prior_visits[:1000]
859             )
860
861             log_string(
862                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
863             )
864
865             model.train(t)
866
867
868 ######################################################################
869
870
871 import stack
872
873
874 class TaskStack(Task):
875     def __init__(
876         self,
877         nb_train_samples,
878         nb_test_samples,
879         batch_size,
880         nb_steps,
881         nb_stacks,
882         nb_digits,
883         fraction_values_for_train=None,
884         device=torch.device("cpu"),
885     ):
886         self.batch_size = batch_size
887         self.nb_steps = nb_steps
888         self.nb_stacks = nb_stacks
889         self.nb_digits = nb_digits
890         self.device = device
891
892         if fraction_values_for_train is None:
893             values_for_train = None
894             values_for_test = None
895         else:
896             all = torch.randperm(10**nb_digits)
897             nb_for_train = int(all.size(0) * fraction_values_for_train)
898             values_for_train = all[:nb_for_train]
899             values_for_test = all[nb_for_train:]
900
901         self.train_input, self.train_stack_counts = stack.generate_sequences(
902             nb_train_samples,
903             nb_steps,
904             nb_stacks,
905             nb_digits,
906             values_for_train,
907             self.device,
908         )
909
910         self.test_input, self.test_stack_counts = stack.generate_sequences(
911             nb_test_samples,
912             nb_steps,
913             nb_stacks,
914             nb_digits,
915             values_for_test,
916             self.device,
917         )
918
919         mask = self.test_input.clone()
920         stack.remove_popped_values(mask, self.nb_stacks, self.nb_digits)
921         mask = mask != self.test_input
922         counts = self.test_stack_counts.flatten()[mask.flatten()]
923         counts = F.one_hot(counts).sum(0)
924         log_string(f"stack_count {counts}")
925
926         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
927
928     def batches(self, split="train", nb_to_use=-1, desc=None):
929         assert split in {"train", "test"}
930         input = self.train_input if split == "train" else self.test_input
931         if nb_to_use > 0:
932             input = input[:nb_to_use]
933         if desc is None:
934             desc = f"epoch-{split}"
935         for batch in tqdm.tqdm(
936             input.split(self.batch_size), dynamic_ncols=True, desc=desc
937         ):
938             yield batch
939
940     def vocabulary_size(self):
941         return self.nb_codes
942
943     def produce_results(self, n_epoch, model):
944         with torch.autograd.no_grad():
945             t = model.training
946             model.eval()
947
948             def compute_nb_correct(input):
949                 result = input.clone()
950                 stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
951                 ar_mask = (result != input).long()
952                 masked_inplace_autoregression(
953                     model, self.batch_size, result, ar_mask, device=self.device
954                 )
955
956                 errors = ((result != input).long() * ar_mask).reshape(
957                     -1, 1 + self.nb_digits
958                 )
959                 ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
960
961                 nb_total = ar_mask.max(1).values.sum()
962                 nb_correct = nb_total - errors.max(1).values.sum()
963
964                 return nb_total, nb_correct
965
966             test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
967
968             log_string(
969                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
970             )
971
972             #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
973             l = 50
974             l = l - l % (1 + self.nb_digits)
975             input = self.test_input[:10, :l]
976             result = input.clone()
977             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
978             ar_mask = (result != input).long()
979             for n in range(result.size(0)):
980                 log_string(
981                     f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
982                 )
983             masked_inplace_autoregression(
984                 model, self.batch_size, result, ar_mask, device=self.device
985             )
986             for n in range(result.size(0)):
987                 log_string(
988                     f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
989                 )
990             #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
991
992             model.train(t)
993
994
995 ######################################################################
996
997
998 def picoclvr_pruner_horizontal_green(p):
999     return not ("green" in p and ("left" in p or "right" in p))
1000
1001
1002 picoclvr_pruner_train = (
1003     picoclvr_pruner_horizontal_green
1004     if args.picocvlr_prune_properties in {"train+eval"}
1005     else None
1006 )
1007
1008 picoclvr_pruner_eval = (
1009     (lambda p: not picoclvr_pruner_horizontal_green(p))
1010     if args.picocvlr_prune_properties in {"train+eval", "eval"}
1011     else None
1012 )
1013
1014 ######################################################################
1015
1016 if args.task == "picoclvr":
1017     task = TaskPicoCLVR(
1018         nb_train_samples=args.nb_train_samples,
1019         nb_test_samples=args.nb_test_samples,
1020         batch_size=args.batch_size,
1021         height=args.picoclvr_height,
1022         width=args.picoclvr_width,
1023         nb_colors=args.picoclvr_nb_colors,
1024         device=device,
1025         pruner_train=picoclvr_pruner_train,
1026         pruner_eval=picoclvr_pruner_eval,
1027     )
1028
1029 elif args.task == "mnist":
1030     task = TaskMNIST(
1031         batch_size=args.batch_size,
1032         device=device,
1033     )
1034
1035 elif args.task == "maze":
1036     task = TaskMaze(
1037         nb_train_samples=args.nb_train_samples,
1038         nb_test_samples=args.nb_test_samples,
1039         batch_size=args.batch_size,
1040         height=args.maze_height,
1041         width=args.maze_width,
1042         nb_walls=args.maze_nb_walls,
1043         device=device,
1044     )
1045
1046 elif args.task == "snake":
1047     task = TaskSnake(
1048         nb_train_samples=args.nb_train_samples,
1049         nb_test_samples=args.nb_test_samples,
1050         batch_size=args.batch_size,
1051         height=args.snake_height,
1052         width=args.snake_width,
1053         nb_colors=args.snake_nb_colors,
1054         length=args.snake_length,
1055         prompt_length=args.snake_length // 2,
1056         device=device,
1057     )
1058
1059 elif args.task == "stack":
1060     task = TaskStack(
1061         nb_train_samples=args.nb_train_samples,
1062         nb_test_samples=args.nb_test_samples,
1063         batch_size=args.batch_size,
1064         nb_steps=args.stack_nb_steps,
1065         nb_stacks=args.stack_nb_stacks,
1066         nb_digits=args.stack_nb_digits,
1067         fraction_values_for_train=args.stack_fraction_values_for_train,
1068         device=device,
1069     )
1070
1071 else:
1072     raise ValueError(f"Unknown task {args.task}")
1073
1074 ######################################################################
1075
1076 log_string(f"device {device}")
1077
1078 vocabulary_size = task.vocabulary_size()
1079
1080 log_string(f"vocabulary_size {vocabulary_size}")
1081
1082 ##############################
1083
1084 model = mygpt.MyGPT(
1085     vocabulary_size=vocabulary_size,
1086     dim_model=args.dim_model,
1087     dim_keys=args.dim_keys,
1088     dim_hidden=args.dim_hidden,
1089     nb_heads=args.nb_heads,
1090     nb_blocks=args.nb_blocks,
1091     causal=True,
1092     dropout=args.dropout,
1093 )
1094
1095 model.to(device)
1096
1097 nb_parameters = sum(p.numel() for p in model.parameters())
1098 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
1099
1100 ######################################################################
1101
1102 nb_epochs_finished = 0
1103
1104 if args.no_checkpoint:
1105     log_string(f"not trying to load checkpoint.")
1106
1107 else:
1108     try:
1109         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1110         checkpoint = torch.load(checkpoint_name)
1111         nb_epochs_finished = checkpoint["nb_epochs_finished"]
1112         model.load_state_dict(checkpoint["model_state"])
1113         torch.set_rng_state(checkpoint["rng_state"])
1114         if torch.cuda.is_available():
1115             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
1116
1117         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
1118
1119     except FileNotFoundError:
1120         log_string("starting from scratch.")
1121
1122     except:
1123         log_string("error when loading the checkpoint.")
1124         exit(1)
1125
1126 ######################################################################
1127
1128 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
1129
1130 token_count = 0
1131 for input in task.batches(split="train"):
1132     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
1133 token_probas = token_count / token_count.sum()
1134 entropy = -torch.xlogy(token_probas, token_probas).sum()
1135 train_set_perplexity = math.exp(entropy)
1136
1137 ##############################
1138
1139 if args.learning_rate_schedule == "cos":
1140     learning_rate_schedule = {}
1141     for n_epoch in range(args.nb_epochs):
1142         u = n_epoch / args.nb_epochs * math.pi
1143         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
1144 else:
1145     u = {
1146         int(k): float(v)
1147         for k, v in [
1148             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
1149         ]
1150     }
1151
1152     learning_rate_schedule = {}
1153     learning_rate = args.learning_rate
1154     for n_epoch in range(args.nb_epochs):
1155         if n_epoch in u:
1156             learning_rate = u[n_epoch]
1157         learning_rate_schedule[n_epoch] = learning_rate
1158
1159 log_string(f"learning_rate_schedule {learning_rate_schedule}")
1160
1161 ##############################
1162
1163 nb_samples_seen = 0
1164
1165 if nb_epochs_finished >= nb_epochs:
1166     task.produce_results(nb_epochs_finished, model)
1167
1168 for n_epoch in range(nb_epochs_finished, nb_epochs):
1169     learning_rate = learning_rate_schedule[n_epoch]
1170
1171     log_string(f"learning_rate {learning_rate}")
1172
1173     if args.optim == "sgd":
1174         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
1175     elif args.optim == "adam":
1176         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
1177     elif args.optim == "adamw":
1178         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
1179     else:
1180         raise ValueError(f"Unknown optimizer {args.optim}.")
1181
1182     model.train()
1183
1184     nb_train_samples, acc_train_loss = 0, 0.0
1185
1186     for input in task.batches(split="train"):
1187         input = input.to(device)
1188         output = model(mygpt.BracketedSequence(input)).x
1189         loss = F.cross_entropy(output.transpose(1, 2), input)
1190         acc_train_loss += loss.item() * input.size(0)
1191         nb_train_samples += input.size(0)
1192         nb_samples_seen += input.size(0)
1193
1194         optimizer.zero_grad()
1195         loss.backward()
1196         optimizer.step()
1197
1198     with torch.autograd.no_grad():
1199         model.eval()
1200
1201         nb_test_samples, acc_test_loss = 0, 0.0
1202
1203         for input in task.batches(split="test"):
1204             input = input.to(device)
1205
1206             output = model(mygpt.BracketedSequence(input)).x
1207             loss = F.cross_entropy(output.transpose(1, 2), input)
1208             acc_test_loss += loss.item() * input.size(0)
1209             nb_test_samples += input.size(0)
1210
1211         train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
1212         test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
1213
1214         log_string(
1215             f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
1216         )
1217
1218         task.produce_results(n_epoch, model)
1219
1220     checkpoint = {
1221         "nb_epochs_finished": n_epoch + 1,
1222         "model_state": model.state_dict(),
1223         "rng_state": torch.get_rng_state(),
1224     }
1225
1226     if torch.cuda.is_available():
1227         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
1228
1229     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1230     torch.save(checkpoint, checkpoint_name)
1231     log_string(f"saved checkpoint {checkpoint_name}")
1232
1233 ######################################################################