Update.
[picoclvr.git] / main.py
1 !/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(
30     description="An implementation of GPT with cache.",
31     formatter_class=argparse.ArgumentDefaultsHelpFormatter,
32 )
33
34 parser.add_argument(
35     "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake"
36 )
37
38 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
39
40 parser.add_argument("--result_dir", type=str, default="results_default")
41
42 parser.add_argument("--seed", type=int, default=0)
43
44 parser.add_argument("--nb_epochs", type=int, default=None)
45
46 parser.add_argument("--batch_size", type=int, default=None)
47
48 parser.add_argument("--nb_train_samples", type=int, default=250000)
49
50 parser.add_argument("--nb_test_samples", type=int, default=10000)
51
52 parser.add_argument("--optim", type=str, default="adam")
53
54 parser.add_argument("--learning_rate", type=float, default=1e-4)
55
56 parser.add_argument("--learning_rate_schedule", type=str, default="10: 2e-5,30: 4e-6")
57
58 parser.add_argument("--dim_model", type=int, default=512)
59
60 parser.add_argument("--dim_keys", type=int, default=64)
61
62 parser.add_argument("--dim_hidden", type=int, default=2048)
63
64 parser.add_argument("--nb_heads", type=int, default=8)
65
66 parser.add_argument("--nb_blocks", type=int, default=12)
67
68 parser.add_argument("--dropout", type=float, default=0.1)
69
70 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
71
72 parser.add_argument("--no_checkpoint", action="store_true", default=False)
73
74 parser.add_argument("--overwrite_results", action="store_true", default=False)
75
76 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
77
78 ##############################
79 # picoclvr options
80
81 parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
82
83 parser.add_argument("--picoclvr_height", type=int, default=12)
84
85 parser.add_argument("--picoclvr_width", type=int, default=16)
86
87 parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
88
89 ##############################
90 # Maze options
91
92 parser.add_argument("--maze_height", type=int, default=13)
93
94 parser.add_argument("--maze_width", type=int, default=21)
95
96 parser.add_argument("--maze_nb_walls", type=int, default=15)
97
98 ##############################
99 # Snake options
100
101 parser.add_argument("--snake_height", type=int, default=6)
102
103 parser.add_argument("--snake_width", type=int, default=8)
104
105 parser.add_argument("--snake_nb_colors", type=int, default=5)
106
107 parser.add_argument("--snake_length", type=int, default=200)
108
109 ######################################################################
110
111 args = parser.parse_args()
112
113 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
114
115 try:
116     os.mkdir(args.result_dir)
117 except FileExistsError:
118     if not args.overwrite_results:
119         print(f"result directory {args.result_dir} already exists")
120         exit(1)
121
122 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
123
124 if args.seed >= 0:
125     # torch.backends.cudnn.deterministic = True
126     # torch.backends.cudnn.benchmark = False
127     # torch.use_deterministic_algorithms(True)
128     torch.manual_seed(args.seed)
129     if torch.cuda.is_available():
130         torch.cuda.manual_seed_all(args.seed)
131
132 ######################################################################
133
134 default_args = {
135     "picoclvr": {
136         "nb_epochs": 25,
137         "batch_size": 25,
138     },
139     "mnist": {
140         "nb_epochs": 25,
141         "batch_size": 10,
142     },
143     "maze": {
144         "nb_epochs": 25,
145         "batch_size": 25,
146     },
147     "snake": {
148         "nb_epochs": 5,
149         "batch_size": 25,
150     },
151 }
152
153 if args.task in default_args:
154     for k, v in default_args[args.task].items():
155         if getattr(args, k) is None:
156             setattr(args, k, v)
157
158 ######################################################################
159
160
161 def log_string(s):
162     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
163
164     if log_file is not None:
165         log_file.write(t + s + "\n")
166         log_file.flush()
167
168     print(t + s)
169     sys.stdout.flush()
170
171
172 for n in vars(args):
173     log_string(f"args.{n} {getattr(args, n)}")
174
175 ######################################################################
176
177
178 # ra_mask is boolean, with 1s on the values to generate
179
180
181 def masked_inplace_autoregression(
182     model,
183     batch_size,
184     input,
185     ar_mask,
186     forbidden_tokens=None,
187     progress_bar_desc="autoregression",
188     device=torch.device("cpu"),
189 ):
190     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
191     if progress_bar_desc is not None:
192         tqdm.tqdm(
193             batches,
194             dynamic_ncols=True,
195             desc=progress_bar_desc,
196             total=input.size(0) // batch_size,
197         )
198     for input, ar_mask in batches:
199         i = (ar_mask.sum(0) > 0).nonzero()
200         if i.min() > 0:
201             model(
202                 mygpt.BracketedSequence(input, 0, i.min())
203             )  # Needed to initialize the model's cache
204         for s in range(i.min(), i.max() + 1):
205             output = model(mygpt.BracketedSequence(input, s, 1)).x
206             logits = output[:, s]
207             if forbidden_tokens is not None:
208                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
209             if args.deterministic_synthesis:
210                 t_next = logits.argmax(1)
211             else:
212                 dist = torch.distributions.categorical.Categorical(logits=logits)
213                 t_next = dist.sample()
214             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
215
216
217 ######################################################################
218
219
220 class Task:
221     def batches(self, split="train"):
222         pass
223
224     def vocabulary_size(self):
225         pass
226
227     def produce_results(self, n_epoch, model):
228         pass
229
230
231 ######################################################################
232
233 import picoclvr
234
235
236 class TaskPicoCLVR(Task):
237     # Make a tensor from a list of strings
238     def tensorize(self, descr):
239         token_descr = [s.strip().split(" ") for s in descr]
240         l = max([len(s) for s in token_descr])
241         token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
242         id_descr = [[self.token2id[u] for u in s] for s in token_descr]
243         return torch.tensor(id_descr, device=self.device)
244
245     # Make a list of strings from a tensor
246     def detensorize(self, x):
247         return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
248
249     # trim all the tensors in the tuple z to remove as much token from
250     # left and right in the first tensor. If z is a tuple, all its
251     # elements are trimed according to the triming for the first
252     def trim(self, z, token="<nul>"):
253         n = self.token2id[token]
254         if type(z) == tuple:
255             x = z[0]
256             i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
257             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
258             return tuple([t[:, a:b] for t in z])
259         else:
260             i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
261             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
262             return z[:, a:b]
263
264     ######################
265     # Not the cleanest part of the code
266
267     # Extract the last image of each sequence, from the last <img>
268     # included, and set to <nul> all the tokens from the beginning of
269     # that image to the end
270     def excise_last_image(self, input):
271         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
272         nb_img_tokens = self.height * self.width + 1
273
274         input = input.clone()
275         t = (input == t_img).long()
276         tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long()
277         i = (t * tail_masks).nonzero(as_tuple=True)
278         j = (
279             i[0][:, None],
280             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
281         )
282         images = self.trim(input[j])
283         input[j] = t_nul
284         loss_masks = 1 - tail_masks
285         input, loss_masks = self.trim((input, loss_masks))
286         return input, loss_masks, images
287
288     def add_true_image(self, input, images, loss_masks):
289         t_nul = self.token2id["<nul>"]
290         nb_img_tokens = self.height * self.width + 1
291         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
292         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
293         t = (input == t_nul).long()
294         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
295         j = (
296             i[0][:, None],
297             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
298         )
299         input[j] = images
300         loss_masks[j] = 1
301         input, loss_masks = self.trim((input, loss_masks))
302         return input, loss_masks
303
304     def add_generated_image(self, input, loss_masks, model):
305         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
306         nb_img_tokens = self.height * self.width + 1
307
308         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
309         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
310         t = (input == t_nul).long()
311         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
312         input[i] = t_img
313
314         j = (
315             i[0][:, None],
316             i[1][:, None]
317             + 1
318             + torch.arange(nb_img_tokens - 1, device=input.device)[None, :],
319         )
320         ar_masks = input.new_zeros(input.size(), dtype=torch.int64)
321         ar_masks[j] = 1
322         forbidden_tokens = (
323             torch.arange(self.vocabulary_size(), device=input.device) == t_nul
324         )
325         with torch.autograd.no_grad():
326             t = model.training
327             model.eval()
328             masked_inplace_autoregression(
329                 model,
330                 self.batch_size,
331                 input,
332                 ar_masks,
333                 forbidden_tokens,
334                 progress_bar_desc=None,
335                 device=self.device,
336             )
337             model.train(t)
338
339         input, loss_masks = self.trim((input, loss_masks))
340
341         return input, loss_masks
342
343     ######################
344
345     def __init__(
346         self,
347         nb_train_samples,
348         nb_test_samples,
349         batch_size,
350         height,
351         width,
352         nb_colors=5,
353         device=torch.device("cpu"),
354         pruner_train=None,
355         pruner_eval=None,
356     ):
357         def generate_descr(nb, cache_suffix, pruner):
358             return picoclvr.generate(
359                 nb,
360                 height=self.height,
361                 width=self.width,
362                 nb_colors=nb_colors,
363                 pruner=pruner,
364             )
365
366         self.height = height
367         self.width = width
368         self.batch_size = batch_size
369         self.device = device
370         self.pruner_train = pruner_train
371         self.pruner_eval = pruner_eval
372
373         param = {
374             "nb_train_samples": nb_train_samples,
375             "nb_test_samples": nb_test_samples,
376             "height": height,
377             "width": width,
378             "nb_colors": nb_colors,
379             "batch_size": batch_size,
380             "rng_state": list(torch.get_rng_state()),
381         }
382
383         log_string(
384             f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
385         )
386         self.train_descr = generate_descr(
387             nb_train_samples, "train", pruner=self.pruner_train
388         )
389         self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
390
391         # Build the tokenizer
392         tokens = {"<nul>", "<img>"}
393         for d in [self.train_descr, self.test_descr]:
394             for s in d:
395                 for t in s.strip().split(" "):
396                     tokens.add(t)
397         # make this set a sorted list to get the same tensors given
398         # the same descr
399         tokens = list(tokens)
400         tokens.sort()
401         self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
402         self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
403
404         # Tokenize the train and test sets
405         self.train_input = self.tensorize(self.train_descr)
406         self.test_input = self.tensorize(self.test_descr)
407
408     def batches(self, split="train"):
409         assert split in {"train", "test"}
410         input = self.train_input if split == "train" else self.test_input
411         for batch in tqdm.tqdm(
412             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
413         ):
414             yield self.trim(batch)
415
416     def vocabulary_size(self):
417         return len(self.token2id)
418
419     def compute_missing_properties(self, n_epoch, model, pruner=None):
420         acc_nb_requested_properties = []
421         acc_nb_missing_properties = []
422         acc_nb_results = 0
423
424         for input in tqdm.tqdm(
425             self.test_input.split(self.batch_size),
426             dynamic_ncols=True,
427             desc=f"test-properties",
428         ):
429             tape, loss_masks, _ = self.excise_last_image(input)
430             tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
431             result_descr = self.detensorize(tape)
432             np = picoclvr.nb_properties(
433                 result_descr,
434                 height=self.height,
435                 width=self.width,
436                 pruner=pruner,
437             )
438             nb_requested_properties, _, nb_missing_properties = zip(*np)
439             acc_nb_requested_properties += nb_requested_properties
440             acc_nb_missing_properties += nb_missing_properties
441             acc_nb_results += len(result_descr)
442
443         nb_requested_properties = sum(acc_nb_requested_properties)
444         nb_missing_properties = sum(acc_nb_missing_properties)
445
446         prefix = "" if pruner is None else "pruned_"
447         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
448         log_string(
449             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
450         )
451         log_string(
452             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
453         )
454
455     ######################################################################
456
457     def produce_results(self, n_epoch, model):
458         self.compute_missing_properties(n_epoch, model)
459
460         if self.pruner_eval is not None:
461             self.compute_missing_properties(n_epoch, model, self.pruner_eval)
462
463         nb_tokens_to_generate = self.height * self.width + 3
464         result_descr = []
465         nb_per_primer = 8
466         primer = []
467
468         for primer_descr in [
469             "red above green <sep> green top <sep> blue right of red",
470             "there is red <sep> there is yellow <sep> there is blue",
471             "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
472             "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
473         ]:
474             primer += [primer_descr] * nb_per_primer
475
476         tape = self.tensorize(primer)
477         loss_masks = 1 - (tape == self.token2id["<nul>"]).long()
478         tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
479         result_descr = self.detensorize(tape)
480
481         np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
482
483         acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
484         acc_nb_results = len(result_descr)
485
486         nb_requested_properties = sum(acc_nb_requested_properties)
487         nb_missing_properties = sum(acc_nb_missing_properties)
488
489         prefix = "demo_"
490         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
491         log_string(
492             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
493         )
494         log_string(
495             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
496         )
497
498         img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
499
500         if img.dim() == 5:
501             if img.size(1) == 1:
502                 img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
503             else:
504                 img = torch.cat(
505                     [
506                         torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
507                         for x in img
508                     ],
509                     0,
510                 )
511
512         image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
513         torchvision.utils.save_image(
514             img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=1.0
515         )
516         log_string(f"wrote {image_name}")
517
518
519 ######################################################################
520
521
522 class TaskMNIST(Task):
523     def __init__(self, batch_size, device=torch.device("cpu")):
524         self.device = device
525         self.batch_size = batch_size
526
527     def batches(self, split="train"):
528         assert split in {"train", "test"}
529         data_set = torchvision.datasets.MNIST(
530             root="./data", train=(split == "train"), download=True
531         )
532         data_input = data_set.data.view(-1, 28 * 28).long()
533         if args.nb_train_samples is not None:
534             data_input = data_input[: args.nb_train_samples]
535         for batch in tqdm.tqdm(
536             data_input.split(self.batch_size), desc=f"epoch-{split}"
537         ):
538             yield batch
539
540     def vocabulary_size(self):
541         return 256
542
543     def produce_results(self, n_epoch, model):
544         results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
545         ar_mask = torch.full_like(results, 1)
546         masked_inplace_autoregression(
547             model, self.batch_size, results, ar_mask, device=self.device
548         )
549         image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
550         torchvision.utils.save_image(
551             1 - results.reshape(-1, 1, 28, 28) / 255.0,
552             image_name,
553             nrow=16,
554             pad_value=0.8,
555         )
556         log_string(f"wrote {image_name}")
557
558
559 ######################################################################
560
561 import maze
562
563
564 class TaskMaze(Task):
565     def map2seq(self, *m):
566         return torch.cat([x.flatten(1) for x in m], 1)
567
568     def seq2map(self, s):
569         s = s.reshape(s.size(0), -1, self.height, self.width)
570         return (s[:, k] for k in range(s.size(1)))
571
572     def __init__(
573         self,
574         nb_train_samples,
575         nb_test_samples,
576         batch_size,
577         height,
578         width,
579         nb_walls,
580         device=torch.device("cpu"),
581     ):
582         self.batch_size = batch_size
583         self.height = height
584         self.width = width
585         self.device = device
586
587         train_mazes, train_paths, _ = maze.create_maze_data(
588             nb_train_samples,
589             height=height,
590             width=width,
591             nb_walls=nb_walls,
592             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
593         )
594         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
595
596         test_mazes, test_paths, _ = maze.create_maze_data(
597             nb_test_samples,
598             height=height,
599             width=width,
600             nb_walls=nb_walls,
601             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
602         )
603         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
604
605         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
606
607     def batches(self, split="train", nb_to_use=-1, desc=None):
608         assert split in {"train", "test"}
609         input = self.train_input if split == "train" else self.test_input
610         if nb_to_use > 0:
611             input = input[:nb_to_use]
612         if desc is None:
613             desc = f"epoch-{split}"
614         for batch in tqdm.tqdm(
615             input.split(self.batch_size), dynamic_ncols=True, desc=desc
616         ):
617             yield batch
618
619     def vocabulary_size(self):
620         return self.nb_codes
621
622     def compute_error(self, model, split="train", nb_to_use=-1):
623         nb_total, nb_correct = 0, 0
624         count = torch.zeros(
625             self.width * self.height, self.width * self.height, device=self.device, dtype=torch.int64
626         )
627         for input in task.batches(split, nb_to_use):
628             result = input.clone()
629             ar_mask = result.new_zeros(result.size())
630             ar_mask[:, self.height * self.width :] = 1
631             result *= 1 - ar_mask
632             masked_inplace_autoregression(
633                 model, self.batch_size, result, ar_mask, device=self.device
634             )
635             mazes, paths = self.seq2map(result)
636             path_correctness = maze.path_correctness(mazes, paths)
637             nb_correct += path_correctness.long().sum()
638             nb_total += mazes.size(0)
639
640             optimal_path_lengths = (
641                 (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
642             )
643             predicted_path_lengths = (
644                 (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
645             )
646             optimal_path_lengths = optimal_path_lengths[path_correctness]
647             predicted_path_lengths = predicted_path_lengths[path_correctness]
648             count[optimal_path_lengths, predicted_path_lengths] += 1
649
650         if count.max() == 0:
651             count = None
652         else:
653             count = count[
654                 : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
655             ]
656
657         return nb_total, nb_correct, count
658
659     def produce_results(self, n_epoch, model):
660         with torch.autograd.no_grad():
661             t = model.training
662             model.eval()
663
664             train_nb_total, train_nb_correct, count = self.compute_error(
665                 model, "train", nb_to_use=1000
666             )
667             log_string(
668                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
669             )
670
671             test_nb_total, test_nb_correct, count = self.compute_error(
672                 model, "test", nb_to_use=1000
673             )
674             log_string(
675                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
676             )
677
678             if count is not None:
679                 proportion_optimal = count.diagonal().sum().float() / count.sum()
680                 log_string(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
681                 with open(
682                     os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
683                 ) as f:
684                     for i in range(count.size(0)):
685                         for j in range(count.size(1)):
686                             eol = " " if j < count.size(1) - 1 else "\n"
687                             f.write(f"{count[i,j]}{eol}")
688
689             input = self.test_input[:48]
690             result = input.clone()
691             ar_mask = result.new_zeros(result.size())
692             ar_mask[:, self.height * self.width :] = 1
693             result *= 1 - ar_mask
694             masked_inplace_autoregression(
695                 model, self.batch_size, result, ar_mask, device=self.device
696             )
697
698             mazes, paths = self.seq2map(input)
699             _, predicted_paths = self.seq2map(result)
700
701             filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
702             maze.save_image(
703                 filename,
704                 mazes=mazes,
705                 target_paths=paths,
706                 predicted_paths=predicted_paths,
707                 path_correct=maze.path_correctness(mazes, predicted_paths),
708             )
709             log_string(f"wrote {filename}")
710
711             model.train(t)
712
713
714 ######################################################################
715
716
717 import snake
718
719
720 class TaskSnake(Task):
721     def __init__(
722         self,
723         nb_train_samples,
724         nb_test_samples,
725         batch_size,
726         height,
727         width,
728         nb_colors,
729         length,
730         prompt_length,
731         device=torch.device("cpu"),
732     ):
733         self.batch_size = batch_size
734         self.height = height
735         self.width = width
736         self.device = device
737         self.prompt_length = prompt_length
738
739         self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
740             nb_train_samples,
741             height,
742             width,
743             nb_colors,
744             length,
745             prompt_length,
746             self.device,
747         )
748         self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
749             nb_test_samples,
750             height,
751             width,
752             nb_colors,
753             length,
754             prompt_length,
755             self.device,
756         )
757
758         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
759
760     def batches(self, split="train", nb_to_use=-1, desc=None):
761         assert split in {"train", "test"}
762         input = self.train_input if split == "train" else self.test_input
763         if nb_to_use > 0:
764             input = input[:nb_to_use]
765         if desc is None:
766             desc = f"epoch-{split}"
767         for batch in tqdm.tqdm(
768             input.split(self.batch_size), dynamic_ncols=True, desc=desc
769         ):
770             yield batch
771
772     def vocabulary_size(self):
773         return self.nb_codes
774
775     def produce_results(self, n_epoch, model):
776         with torch.autograd.no_grad():
777             t = model.training
778             model.eval()
779
780             def compute_nb_correct(input, prior_visits):
781                 result = input.clone()
782                 i = torch.arange(result.size(1), device=result.device)[None, :]
783                 ar_mask = (
784                     torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
785                     .long()
786                     .expand_as(result)
787                 )
788                 result *= 1 - ar_mask
789
790                 # snake.solver(result,ar_mask)
791
792                 masked_inplace_autoregression(
793                     model, self.batch_size, result, ar_mask, device=self.device
794                 )
795
796                 nb_total = ((prior_visits > 0) * ar_mask).sum()
797
798                 nb_correct = (
799                     (result == input).long() * (prior_visits > 0) * ar_mask
800                 ).sum()
801
802                 # nb_total = result.size(0)
803                 # nb_correct = ((result - input).abs().sum(1) == 0).sum()
804
805                 return nb_total, nb_correct
806
807             # train_nb_total, train_nb_correct = compute_nb_correct(
808             # self.train_input, self.train_prior_visits
809             # )
810
811             # log_string(
812             # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
813             # )
814
815             test_nb_total, test_nb_correct = compute_nb_correct(
816                 self.test_input[:1000], self.test_prior_visits[:1000]
817             )
818
819             log_string(
820                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
821             )
822
823             model.train(t)
824
825
826 ######################################################################
827
828
829 def picoclvr_pruner_horizontal_green(p):
830     return not ("green" in p and ("left" in p or "right" in p))
831
832
833 picoclvr_pruner_train = (
834     picoclvr_pruner_horizontal_green
835     if args.picocvlr_prune_properties in {"train+eval"}
836     else None
837 )
838
839 picoclvr_pruner_eval = (
840     (lambda p: not picoclvr_pruner_horizontal_green(p))
841     if args.picocvlr_prune_properties in {"train+eval", "eval"}
842     else None
843 )
844
845 ######################################################################
846
847 if args.task == "picoclvr":
848     task = TaskPicoCLVR(
849         nb_train_samples=args.nb_train_samples,
850         nb_test_samples=args.nb_test_samples,
851         batch_size=args.batch_size,
852         height=args.picoclvr_height,
853         width=args.picoclvr_width,
854         nb_colors=args.picoclvr_nb_colors,
855         device=device,
856         pruner_train=picoclvr_pruner_train,
857         pruner_eval=picoclvr_pruner_eval,
858     )
859
860 elif args.task == "mnist":
861     task = TaskMNIST(
862         batch_size=args.batch_size,
863         device=device,
864     )
865
866 elif args.task == "maze":
867     task = TaskMaze(
868         nb_train_samples=args.nb_train_samples,
869         nb_test_samples=args.nb_test_samples,
870         batch_size=args.batch_size,
871         height=args.maze_height,
872         width=args.maze_width,
873         nb_walls=args.maze_nb_walls,
874         device=device,
875     )
876
877 elif args.task == "snake":
878     task = TaskSnake(
879         nb_train_samples=args.nb_train_samples,
880         nb_test_samples=args.nb_test_samples,
881         batch_size=args.batch_size,
882         height=args.snake_height,
883         width=args.snake_width,
884         nb_colors=args.snake_nb_colors,
885         length=args.snake_length,
886         prompt_length=args.snake_length // 2,
887         device=device,
888     )
889
890 else:
891     raise ValueError(f"Unknown task {args.task}")
892
893 ######################################################################
894
895 log_string(f"device {device}")
896
897 vocabulary_size = task.vocabulary_size()
898
899 log_string(f"vocabulary_size {vocabulary_size}")
900
901 ##############################
902
903 model = mygpt.MyGPT(
904     vocabulary_size=vocabulary_size,
905     dim_model=args.dim_model,
906     dim_keys=args.dim_keys,
907     dim_hidden=args.dim_hidden,
908     nb_heads=args.nb_heads,
909     nb_blocks=args.nb_blocks,
910     causal=True,
911     dropout=args.dropout,
912 )
913
914 model.to(device)
915
916 nb_parameters = sum(p.numel() for p in model.parameters())
917 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
918
919 ######################################################################
920
921 nb_epochs_finished = 0
922
923 if args.no_checkpoint:
924     log_string(f"not trying to load checkpoint.")
925
926 else:
927     try:
928         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
929         checkpoint = torch.load(checkpoint_name)
930         nb_epochs_finished = checkpoint["nb_epochs_finished"]
931         model.load_state_dict(checkpoint["model_state"])
932         torch.set_rng_state(checkpoint["rng_state"])
933         if torch.cuda.is_available():
934             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
935
936         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
937
938     except FileNotFoundError:
939         log_string("starting from scratch.")
940
941     except:
942         log_string("error when loading the checkpoint.")
943         exit(1)
944
945 ######################################################################
946
947 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
948
949 token_count = 0
950 for input in task.batches(split="train"):
951     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
952 token_probas = token_count / token_count.sum()
953 entropy = -torch.xlogy(token_probas, token_probas).sum()
954 train_set_perplexity = math.exp(entropy)
955
956 ##############################
957
958 if args.learning_rate_schedule == "cos":
959     learning_rate_schedule = {}
960     for n_epoch in range(args.nb_epochs):
961         u = n_epoch / args.nb_epochs * math.pi
962         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
963 else:
964     u = {
965         int(k): float(v)
966         for k, v in [
967             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
968         ]
969     }
970
971     learning_rate_schedule = {}
972     learning_rate = args.learning_rate
973     for n_epoch in range(args.nb_epochs):
974         if n_epoch in u:
975             learning_rate = u[n_epoch]
976         learning_rate_schedule[n_epoch] = learning_rate
977
978 log_string(f"learning_rate_schedule {learning_rate_schedule}")
979
980 ##############################
981
982 nb_samples_seen = 0
983
984 if nb_epochs_finished >= nb_epochs:
985     task.produce_results(nb_epochs_finished, model)
986
987 for n_epoch in range(nb_epochs_finished, nb_epochs):
988     learning_rate = learning_rate_schedule[n_epoch]
989
990     log_string(f"learning_rate {learning_rate}")
991
992     if args.optim == "sgd":
993         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
994     elif args.optim == "adam":
995         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
996     elif args.optim == "adamw":
997         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
998     else:
999         raise ValueError(f"Unknown optimizer {args.optim}.")
1000
1001     model.train()
1002
1003     nb_train_samples, acc_train_loss = 0, 0.0
1004
1005     for input in task.batches(split="train"):
1006         input = input.to(device)
1007         output = model(mygpt.BracketedSequence(input)).x
1008         loss = F.cross_entropy(output.transpose(1, 2), input)
1009         acc_train_loss += loss.item() * input.size(0)
1010         nb_train_samples += input.size(0)
1011         nb_samples_seen += input.size(0)
1012
1013         optimizer.zero_grad()
1014         loss.backward()
1015         optimizer.step()
1016
1017     with torch.autograd.no_grad():
1018         model.eval()
1019
1020         nb_test_samples, acc_test_loss = 0, 0.0
1021
1022         for input in task.batches(split="test"):
1023             input = input.to(device)
1024
1025             output = model(mygpt.BracketedSequence(input)).x
1026             loss = F.cross_entropy(output.transpose(1, 2), input)
1027             acc_test_loss += loss.item() * input.size(0)
1028             nb_test_samples += input.size(0)
1029
1030         train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
1031         test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
1032
1033         log_string(
1034             f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
1035         )
1036
1037         task.produce_results(n_epoch, model)
1038
1039     checkpoint = {
1040         "nb_epochs_finished": n_epoch + 1,
1041         "model_state": model.state_dict(),
1042         "rng_state": torch.get_rng_state(),
1043     }
1044
1045     if torch.cuda.is_available():
1046         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
1047
1048     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1049     torch.save(checkpoint, checkpoint_name)
1050     log_string(f"saved checkpoint {checkpoint_name}")
1051
1052 ######################################################################