Update.
[picoclvr.git] / main.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(
30     description="An implementation of GPT with cache.",
31     formatter_class=argparse.ArgumentDefaultsHelpFormatter,
32 )
33
34 parser.add_argument(
35     "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake, stack"
36 )
37
38 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
39
40 parser.add_argument("--result_dir", type=str, default=None)
41
42 parser.add_argument("--seed", type=int, default=0)
43
44 parser.add_argument("--nb_epochs", type=int, default=None)
45
46 parser.add_argument("--batch_size", type=int, default=None)
47
48 parser.add_argument("--nb_train_samples", type=int, default=None)
49
50 parser.add_argument("--nb_test_samples", type=int, default=None)
51
52 parser.add_argument("--optim", type=str, default="adam")
53
54 parser.add_argument("--learning_rate", type=float, default=1e-4)
55
56 parser.add_argument("--learning_rate_schedule", type=str, default="10: 2e-5,30: 4e-6")
57
58 parser.add_argument("--dim_model", type=int, default=512)
59
60 parser.add_argument("--dim_keys", type=int, default=64)
61
62 parser.add_argument("--dim_hidden", type=int, default=2048)
63
64 parser.add_argument("--nb_heads", type=int, default=8)
65
66 parser.add_argument("--nb_blocks", type=int, default=12)
67
68 parser.add_argument("--dropout", type=float, default=0.1)
69
70 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
71
72 parser.add_argument("--no_checkpoint", action="store_true", default=False)
73
74 parser.add_argument("--overwrite_results", action="store_true", default=False)
75
76 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
77
78 ##############################
79 # picoclvr options
80
81 parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
82
83 parser.add_argument("--picoclvr_height", type=int, default=12)
84
85 parser.add_argument("--picoclvr_width", type=int, default=16)
86
87 parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
88
89 ##############################
90 # Maze options
91
92 parser.add_argument("--maze_height", type=int, default=13)
93
94 parser.add_argument("--maze_width", type=int, default=21)
95
96 parser.add_argument("--maze_nb_walls", type=int, default=15)
97
98 ##############################
99 # Snake options
100
101 parser.add_argument("--snake_height", type=int, default=6)
102
103 parser.add_argument("--snake_width", type=int, default=8)
104
105 parser.add_argument("--snake_nb_colors", type=int, default=5)
106
107 parser.add_argument("--snake_length", type=int, default=200)
108
109 ##############################
110 # Snake options
111
112 parser.add_argument("--stack_nb_steps", type=int, default=100)
113
114 parser.add_argument("--stack_nb_stacks", type=int, default=1)
115
116 parser.add_argument("--stack_nb_digits", type=int, default=3)
117
118 parser.add_argument("--stack_fraction_values_for_train", type=float, default=None)
119
120 ######################################################################
121
122 args = parser.parse_args()
123
124 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
125
126 try:
127     os.mkdir(args.result_dir)
128 except FileExistsError:
129     if not args.overwrite_results:
130         print(f"result directory {args.result_dir} already exists")
131         exit(1)
132
133 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
134
135 if args.seed >= 0:
136     # torch.backends.cudnn.deterministic = True
137     # torch.backends.cudnn.benchmark = False
138     # torch.use_deterministic_algorithms(True)
139     torch.manual_seed(args.seed)
140     if torch.cuda.is_available():
141         torch.cuda.manual_seed_all(args.seed)
142
143 ######################################################################
144
145 default_args = {
146     "picoclvr": {
147         "result_dir": "results_picoclvr",
148         "nb_epochs": 25,
149         "batch_size": 25,
150         "nb_train_samples": 250000,
151         "nb_test_samples": 10000,
152     },
153     "mnist": {
154         "result_dir": "results_mnist",
155         "nb_epochs": 25,
156         "batch_size": 10,
157         "nb_train_samples": 250000,
158         "nb_test_samples": 10000,
159     },
160     "maze": {
161         "result_dir": "results_maze",
162         "nb_epochs": 25,
163         "batch_size": 25,
164         "nb_train_samples": 250000,
165         "nb_test_samples": 10000,
166     },
167     "snake": {
168         "result_dir": "results_snake",
169         "nb_epochs": 5,
170         "batch_size": 25,
171         "nb_train_samples": 250000,
172         "nb_test_samples": 10000,
173     },
174     "stack": {
175         "result_dir": "results_stack",
176         "nb_epochs": 5,
177         "batch_size": 25,
178         "nb_train_samples": 100000,
179         "nb_test_samples": 1000,
180     },
181 }
182
183 if args.task in default_args:
184     for k, v in default_args[args.task].items():
185         if getattr(args, k) is None:
186             setattr(args, k, v)
187
188 ######################################################################
189
190
191 def log_string(s):
192     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
193
194     if log_file is not None:
195         log_file.write(t + s + "\n")
196         log_file.flush()
197
198     print(t + s)
199     sys.stdout.flush()
200
201
202 for n in vars(args):
203     log_string(f"args.{n} {getattr(args, n)}")
204
205 ######################################################################
206
207
208 # ra_mask is boolean, with 1s on the values to generate
209
210
211 def masked_inplace_autoregression(
212     model,
213     batch_size,
214     input,
215     ar_mask,
216     forbidden_tokens=None,
217     progress_bar_desc="autoregression",
218     device=torch.device("cpu"),
219 ):
220     # p = logits.softmax(1)
221     # entropy[:,s]= p.xlogy(p).sum(1) / math.log(2)
222     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
223     if progress_bar_desc is not None:
224         batches = tqdm.tqdm(
225             batches,
226             dynamic_ncols=True,
227             desc=progress_bar_desc,
228             total=input.size(0) // batch_size,
229         )
230     for input, ar_mask in batches:
231         i = (ar_mask.sum(0) > 0).nonzero()
232         if i.min() > 0:
233             model(
234                 mygpt.BracketedSequence(input, 0, i.min())
235             )  # Needed to initialize the model's cache
236         for s in range(i.min(), i.max() + 1):
237             output = model(mygpt.BracketedSequence(input, s, 1)).x
238             logits = output[:, s]
239             if forbidden_tokens is not None:
240                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
241             if args.deterministic_synthesis:
242                 t_next = logits.argmax(1)
243             else:
244                 dist = torch.distributions.categorical.Categorical(logits=logits)
245                 t_next = dist.sample()
246             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
247
248
249 ######################################################################
250
251
252 class Task:
253     def batches(self, split="train"):
254         pass
255
256     def vocabulary_size(self):
257         pass
258
259     def produce_results(self, n_epoch, model):
260         pass
261
262
263 ######################################################################
264
265 import picoclvr
266
267
268 class TaskPicoCLVR(Task):
269     # Make a tensor from a list of strings
270     def tensorize(self, descr):
271         token_descr = [s.strip().split(" ") for s in descr]
272         l = max([len(s) for s in token_descr])
273         token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
274         id_descr = [[self.token2id[u] for u in s] for s in token_descr]
275         return torch.tensor(id_descr, device=self.device)
276
277     # Make a list of strings from a tensor
278     def detensorize(self, x):
279         return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
280
281     # trim all the tensors in the tuple z to remove as much token from
282     # left and right in the first tensor. If z is a tuple, all its
283     # elements are trimed according to the triming for the first
284     def trim(self, z, token="<nul>"):
285         n = self.token2id[token]
286         if type(z) == tuple:
287             x = z[0]
288             i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
289             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
290             return tuple([t[:, a:b] for t in z])
291         else:
292             i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
293             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
294             return z[:, a:b]
295
296     ######################
297     # Not the cleanest part of the code
298
299     # Extract the last image of each sequence, from the last <img>
300     # included, and set to <nul> all the tokens from the beginning of
301     # that image to the end
302     def excise_last_image(self, input):
303         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
304         nb_img_tokens = self.height * self.width + 1
305
306         input = input.clone()
307         t = (input == t_img).long()
308         tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long()
309         i = (t * tail_masks).nonzero(as_tuple=True)
310         j = (
311             i[0][:, None],
312             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
313         )
314         images = self.trim(input[j])
315         input[j] = t_nul
316         loss_masks = 1 - tail_masks
317         input, loss_masks = self.trim((input, loss_masks))
318         return input, loss_masks, images
319
320     def add_true_image(self, input, images, loss_masks):
321         t_nul = self.token2id["<nul>"]
322         nb_img_tokens = self.height * self.width + 1
323         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
324         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
325         t = (input == t_nul).long()
326         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
327         j = (
328             i[0][:, None],
329             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
330         )
331         input[j] = images
332         loss_masks[j] = 1
333         input, loss_masks = self.trim((input, loss_masks))
334         return input, loss_masks
335
336     def add_generated_image(self, input, loss_masks, model):
337         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
338         nb_img_tokens = self.height * self.width + 1
339
340         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
341         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
342         t = (input == t_nul).long()
343         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
344         input[i] = t_img
345
346         j = (
347             i[0][:, None],
348             i[1][:, None]
349             + 1
350             + torch.arange(nb_img_tokens - 1, device=input.device)[None, :],
351         )
352         ar_masks = input.new_zeros(input.size(), dtype=torch.int64)
353         ar_masks[j] = 1
354         forbidden_tokens = (
355             torch.arange(self.vocabulary_size(), device=input.device) == t_nul
356         )
357         with torch.autograd.no_grad():
358             t = model.training
359             model.eval()
360             masked_inplace_autoregression(
361                 model,
362                 self.batch_size,
363                 input,
364                 ar_masks,
365                 forbidden_tokens,
366                 progress_bar_desc=None,
367                 device=self.device,
368             )
369             model.train(t)
370
371         input, loss_masks = self.trim((input, loss_masks))
372
373         return input, loss_masks
374
375     ######################
376
377     def __init__(
378         self,
379         nb_train_samples,
380         nb_test_samples,
381         batch_size,
382         height,
383         width,
384         nb_colors=5,
385         device=torch.device("cpu"),
386         pruner_train=None,
387         pruner_eval=None,
388     ):
389         def generate_descr(nb, cache_suffix, pruner):
390             return picoclvr.generate(
391                 nb,
392                 height=self.height,
393                 width=self.width,
394                 nb_colors=nb_colors,
395                 pruner=pruner,
396             )
397
398         self.height = height
399         self.width = width
400         self.batch_size = batch_size
401         self.device = device
402         self.pruner_train = pruner_train
403         self.pruner_eval = pruner_eval
404
405         param = {
406             "nb_train_samples": nb_train_samples,
407             "nb_test_samples": nb_test_samples,
408             "height": height,
409             "width": width,
410             "nb_colors": nb_colors,
411             "batch_size": batch_size,
412             "rng_state": list(torch.get_rng_state()),
413         }
414
415         log_string(
416             f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
417         )
418         self.train_descr = generate_descr(
419             nb_train_samples, "train", pruner=self.pruner_train
420         )
421         self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
422
423         # Build the tokenizer
424         tokens = {"<nul>", "<img>"}
425         for d in [self.train_descr, self.test_descr]:
426             for s in d:
427                 for t in s.strip().split(" "):
428                     tokens.add(t)
429         # make this set a sorted list to get the same tensors given
430         # the same descr
431         tokens = list(tokens)
432         tokens.sort()
433         self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
434         self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
435
436         # Tokenize the train and test sets
437         self.train_input = self.tensorize(self.train_descr)
438         self.test_input = self.tensorize(self.test_descr)
439
440     def batches(self, split="train"):
441         assert split in {"train", "test"}
442         input = self.train_input if split == "train" else self.test_input
443         for batch in tqdm.tqdm(
444             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
445         ):
446             yield self.trim(batch)
447
448     def vocabulary_size(self):
449         return len(self.token2id)
450
451     def compute_missing_properties(self, n_epoch, model, pruner=None):
452         acc_nb_requested_properties = []
453         acc_nb_missing_properties = []
454         acc_nb_results = 0
455
456         for input in tqdm.tqdm(
457             self.test_input.split(self.batch_size),
458             dynamic_ncols=True,
459             desc=f"test-properties",
460         ):
461             tape, loss_masks, _ = self.excise_last_image(input)
462             tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
463             result_descr = self.detensorize(tape)
464             np = picoclvr.nb_properties(
465                 result_descr,
466                 height=self.height,
467                 width=self.width,
468                 pruner=pruner,
469             )
470             nb_requested_properties, _, nb_missing_properties = zip(*np)
471             acc_nb_requested_properties += nb_requested_properties
472             acc_nb_missing_properties += nb_missing_properties
473             acc_nb_results += len(result_descr)
474
475         nb_requested_properties = sum(acc_nb_requested_properties)
476         nb_missing_properties = sum(acc_nb_missing_properties)
477
478         prefix = "" if pruner is None else "pruned_"
479         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
480         log_string(
481             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
482         )
483         log_string(
484             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
485         )
486
487     ######################################################################
488
489     def produce_results(self, n_epoch, model):
490         self.compute_missing_properties(n_epoch, model)
491
492         if self.pruner_eval is not None:
493             self.compute_missing_properties(n_epoch, model, self.pruner_eval)
494
495         nb_tokens_to_generate = self.height * self.width + 3
496         result_descr = []
497         nb_per_primer = 8
498         primer = []
499
500         for primer_descr in [
501             "red above green <sep> green top <sep> blue right of red",
502             "there is red <sep> there is yellow <sep> there is blue",
503             "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
504             "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
505         ]:
506             primer += [primer_descr] * nb_per_primer
507
508         tape = self.tensorize(primer)
509         loss_masks = 1 - (tape == self.token2id["<nul>"]).long()
510         tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
511         result_descr = self.detensorize(tape)
512
513         np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
514
515         acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
516         acc_nb_results = len(result_descr)
517
518         nb_requested_properties = sum(acc_nb_requested_properties)
519         nb_missing_properties = sum(acc_nb_missing_properties)
520
521         prefix = "demo_"
522         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
523         log_string(
524             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
525         )
526         log_string(
527             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
528         )
529
530         img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
531
532         if img.dim() == 5:
533             if img.size(1) == 1:
534                 img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
535             else:
536                 img = torch.cat(
537                     [
538                         torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
539                         for x in img
540                     ],
541                     0,
542                 )
543
544         image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
545         torchvision.utils.save_image(
546             img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=0.0
547         )
548         log_string(f"wrote {image_name}")
549
550
551 ######################################################################
552
553
554 class TaskMNIST(Task):
555     def __init__(self, batch_size, device=torch.device("cpu")):
556         self.device = device
557         self.batch_size = batch_size
558
559     def batches(self, split="train"):
560         assert split in {"train", "test"}
561         data_set = torchvision.datasets.MNIST(
562             root="./data", train=(split == "train"), download=True
563         )
564         data_input = data_set.data.view(-1, 28 * 28).long()
565         if args.nb_train_samples is not None:
566             data_input = data_input[: args.nb_train_samples]
567         for batch in tqdm.tqdm(
568             data_input.split(self.batch_size), desc=f"epoch-{split}"
569         ):
570             yield batch
571
572     def vocabulary_size(self):
573         return 256
574
575     def produce_results(self, n_epoch, model):
576         results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
577         ar_mask = torch.full_like(results, 1)
578         masked_inplace_autoregression(
579             model, self.batch_size, results, ar_mask, device=self.device
580         )
581         image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
582         torchvision.utils.save_image(
583             1 - results.reshape(-1, 1, 28, 28) / 255.0,
584             image_name,
585             nrow=16,
586             pad_value=0.8,
587         )
588         log_string(f"wrote {image_name}")
589
590
591 ######################################################################
592
593 import maze
594
595
596 class TaskMaze(Task):
597     def map2seq(self, *m):
598         return torch.cat([x.flatten(1) for x in m], 1)
599
600     def seq2map(self, s):
601         s = s.reshape(s.size(0), -1, self.height, self.width)
602         return (s[:, k] for k in range(s.size(1)))
603
604     def __init__(
605         self,
606         nb_train_samples,
607         nb_test_samples,
608         batch_size,
609         height,
610         width,
611         nb_walls,
612         device=torch.device("cpu"),
613     ):
614         self.batch_size = batch_size
615         self.height = height
616         self.width = width
617         self.device = device
618
619         train_mazes, train_paths, _ = maze.create_maze_data(
620             nb_train_samples,
621             height=height,
622             width=width,
623             nb_walls=nb_walls,
624             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
625         )
626         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
627
628         test_mazes, test_paths, _ = maze.create_maze_data(
629             nb_test_samples,
630             height=height,
631             width=width,
632             nb_walls=nb_walls,
633             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
634         )
635         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
636
637         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
638
639     def batches(self, split="train", nb_to_use=-1, desc=None):
640         assert split in {"train", "test"}
641         input = self.train_input if split == "train" else self.test_input
642         if nb_to_use > 0:
643             input = input[:nb_to_use]
644         if desc is None:
645             desc = f"epoch-{split}"
646         for batch in tqdm.tqdm(
647             input.split(self.batch_size), dynamic_ncols=True, desc=desc
648         ):
649             yield batch
650
651     def vocabulary_size(self):
652         return self.nb_codes
653
654     def compute_error(self, model, split="train", nb_to_use=-1):
655         nb_total, nb_correct = 0, 0
656         count = torch.zeros(
657             self.width * self.height,
658             self.width * self.height,
659             device=self.device,
660             dtype=torch.int64,
661         )
662         for input in tqdm.tqdm(
663             task.batches(split, nb_to_use),
664             dynamic_ncols=True,
665             desc=f"test-mazes",
666         ):
667             result = input.clone()
668             ar_mask = result.new_zeros(result.size())
669             ar_mask[:, self.height * self.width :] = 1
670             result *= 1 - ar_mask
671             masked_inplace_autoregression(
672                 model,
673                 self.batch_size,
674                 result,
675                 ar_mask,
676                 progress_bar_desc=None,
677                 device=self.device,
678             )
679             mazes, paths = self.seq2map(result)
680             path_correctness = maze.path_correctness(mazes, paths)
681             nb_correct += path_correctness.long().sum()
682             nb_total += mazes.size(0)
683
684             optimal_path_lengths = (
685                 (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
686             )
687             predicted_path_lengths = (
688                 (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
689             )
690             optimal_path_lengths = optimal_path_lengths[path_correctness]
691             predicted_path_lengths = predicted_path_lengths[path_correctness]
692             count[optimal_path_lengths, predicted_path_lengths] += 1
693
694         if count.max() == 0:
695             count = None
696         else:
697             count = count[
698                 : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
699             ]
700
701         return nb_total, nb_correct, count
702
703     def produce_results(self, n_epoch, model):
704         with torch.autograd.no_grad():
705             t = model.training
706             model.eval()
707
708             train_nb_total, train_nb_correct, count = self.compute_error(
709                 model, "train", nb_to_use=1000
710             )
711             log_string(
712                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
713             )
714
715             test_nb_total, test_nb_correct, count = self.compute_error(
716                 model, "test", nb_to_use=1000
717             )
718             log_string(
719                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
720             )
721
722             if count is not None:
723                 proportion_optimal = count.diagonal().sum().float() / count.sum()
724                 log_string(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
725                 with open(
726                     os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
727                 ) as f:
728                     for i in range(count.size(0)):
729                         for j in range(count.size(1)):
730                             eol = " " if j < count.size(1) - 1 else "\n"
731                             f.write(f"{count[i,j]}{eol}")
732
733             input = self.test_input[:48]
734             result = input.clone()
735             ar_mask = result.new_zeros(result.size())
736             ar_mask[:, self.height * self.width :] = 1
737             result *= 1 - ar_mask
738             masked_inplace_autoregression(
739                 model, self.batch_size, result, ar_mask, device=self.device
740             )
741
742             mazes, paths = self.seq2map(input)
743             _, predicted_paths = self.seq2map(result)
744
745             filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
746             maze.save_image(
747                 filename,
748                 mazes=mazes,
749                 target_paths=paths,
750                 predicted_paths=predicted_paths,
751                 path_correct=maze.path_correctness(mazes, predicted_paths),
752                 path_optimal=maze.path_optimality(paths, predicted_paths),
753             )
754             log_string(f"wrote {filename}")
755
756             model.train(t)
757
758
759 ######################################################################
760
761
762 import snake
763
764
765 class TaskSnake(Task):
766     def __init__(
767         self,
768         nb_train_samples,
769         nb_test_samples,
770         batch_size,
771         height,
772         width,
773         nb_colors,
774         length,
775         prompt_length,
776         device=torch.device("cpu"),
777     ):
778         self.batch_size = batch_size
779         self.height = height
780         self.width = width
781         self.device = device
782         self.prompt_length = prompt_length
783
784         self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
785             nb_train_samples,
786             height,
787             width,
788             nb_colors,
789             length,
790             prompt_length,
791             self.device,
792         )
793         self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
794             nb_test_samples,
795             height,
796             width,
797             nb_colors,
798             length,
799             prompt_length,
800             self.device,
801         )
802
803         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
804
805     def batches(self, split="train", nb_to_use=-1, desc=None):
806         assert split in {"train", "test"}
807         input = self.train_input if split == "train" else self.test_input
808         if nb_to_use > 0:
809             input = input[:nb_to_use]
810         if desc is None:
811             desc = f"epoch-{split}"
812         for batch in tqdm.tqdm(
813             input.split(self.batch_size), dynamic_ncols=True, desc=desc
814         ):
815             yield batch
816
817     def vocabulary_size(self):
818         return self.nb_codes
819
820     def produce_results(self, n_epoch, model):
821         with torch.autograd.no_grad():
822             t = model.training
823             model.eval()
824
825             def compute_nb_correct(input, prior_visits):
826                 result = input.clone()
827                 i = torch.arange(result.size(1), device=result.device)[None, :]
828                 ar_mask = (
829                     torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
830                     .long()
831                     .expand_as(result)
832                 )
833                 result *= 1 - ar_mask
834
835                 # snake.solver(result,ar_mask)
836
837                 masked_inplace_autoregression(
838                     model, self.batch_size, result, ar_mask, device=self.device
839                 )
840
841                 nb_total = ((prior_visits > 0) * ar_mask).sum()
842
843                 nb_correct = (
844                     (result == input).long() * (prior_visits > 0) * ar_mask
845                 ).sum()
846
847                 # nb_total = result.size(0)
848                 # nb_correct = ((result - input).abs().sum(1) == 0).sum()
849
850                 return nb_total, nb_correct
851
852             # train_nb_total, train_nb_correct = compute_nb_correct(
853             # self.train_input, self.train_prior_visits
854             # )
855
856             # log_string(
857             # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
858             # )
859
860             test_nb_total, test_nb_correct = compute_nb_correct(
861                 self.test_input[:1000], self.test_prior_visits[:1000]
862             )
863
864             log_string(
865                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
866             )
867
868             model.train(t)
869
870
871 ######################################################################
872
873
874 import stack
875
876
877 class TaskStack(Task):
878     def __init__(
879         self,
880         nb_train_samples,
881         nb_test_samples,
882         batch_size,
883         nb_steps,
884         nb_stacks,
885         nb_digits,
886         fraction_values_for_train=None,
887         device=torch.device("cpu"),
888     ):
889         self.batch_size = batch_size
890         self.nb_steps = nb_steps
891         self.nb_stacks = nb_stacks
892         self.nb_digits = nb_digits
893         self.device = device
894
895         if fraction_values_for_train is None:
896             values_for_train = None
897             values_for_test = None
898         else:
899             all = torch.randperm(10**nb_digits)
900             nb_for_train = int(all.size(0) * fraction_values_for_train)
901             values_for_train = all[:nb_for_train]
902             values_for_test = all[nb_for_train:]
903
904         self.train_input, self.train_stack_counts = stack.generate_sequences(
905             nb_train_samples,
906             nb_steps,
907             nb_stacks,
908             nb_digits,
909             values_for_train,
910             self.device,
911         )
912
913         self.test_input, self.test_stack_counts = stack.generate_sequences(
914             nb_test_samples,
915             nb_steps,
916             nb_stacks,
917             nb_digits,
918             values_for_test,
919             self.device,
920         )
921
922         mask = self.test_input.clone()
923         stack.remove_popped_values(mask, self.nb_stacks, self.nb_digits)
924         mask = mask != self.test_input
925         counts = self.test_stack_counts.flatten()[mask.flatten()]
926         counts = F.one_hot(counts).sum(0)
927         log_string(f"stack_count {counts}")
928
929         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
930
931     def batches(self, split="train", nb_to_use=-1, desc=None):
932         assert split in {"train", "test"}
933         input = self.train_input if split == "train" else self.test_input
934         if nb_to_use > 0:
935             input = input[:nb_to_use]
936         if desc is None:
937             desc = f"epoch-{split}"
938         for batch in tqdm.tqdm(
939             input.split(self.batch_size), dynamic_ncols=True, desc=desc
940         ):
941             yield batch
942
943     def vocabulary_size(self):
944         return self.nb_codes
945
946     def produce_results(self, n_epoch, model):
947         with torch.autograd.no_grad():
948             t = model.training
949             model.eval()
950
951             def compute_nb_correct(input):
952                 result = input.clone()
953                 stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
954                 ar_mask = (result != input).long()
955                 masked_inplace_autoregression(
956                     model, self.batch_size, result, ar_mask, device=self.device
957                 )
958
959                 errors = ((result != input).long() * ar_mask).reshape(
960                     -1, 1 + self.nb_digits
961                 )
962                 ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
963
964                 nb_total = ar_mask.max(1).values.sum()
965                 nb_correct = nb_total - errors.max(1).values.sum()
966
967                 return nb_total, nb_correct
968
969             test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
970
971             log_string(
972                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
973             )
974
975             #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
976             l = 50
977             l = l - l % (1 + self.nb_digits)
978             input = self.test_input[:10, :l]
979             result = input.clone()
980             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
981             ar_mask = (result != input).long()
982             for n in range(result.size(0)):
983                 log_string(
984                     f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
985                 )
986             masked_inplace_autoregression(
987                 model, self.batch_size, result, ar_mask, device=self.device
988             )
989             for n in range(result.size(0)):
990                 log_string(
991                     f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
992                 )
993             #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
994
995             model.train(t)
996
997
998 ######################################################################
999
1000
1001 def picoclvr_pruner_horizontal_green(p):
1002     return not ("green" in p and ("left" in p or "right" in p))
1003
1004
1005 picoclvr_pruner_train = (
1006     picoclvr_pruner_horizontal_green
1007     if args.picocvlr_prune_properties in {"train+eval"}
1008     else None
1009 )
1010
1011 picoclvr_pruner_eval = (
1012     (lambda p: not picoclvr_pruner_horizontal_green(p))
1013     if args.picocvlr_prune_properties in {"train+eval", "eval"}
1014     else None
1015 )
1016
1017 ######################################################################
1018
1019 if args.task == "picoclvr":
1020     task = TaskPicoCLVR(
1021         nb_train_samples=args.nb_train_samples,
1022         nb_test_samples=args.nb_test_samples,
1023         batch_size=args.batch_size,
1024         height=args.picoclvr_height,
1025         width=args.picoclvr_width,
1026         nb_colors=args.picoclvr_nb_colors,
1027         device=device,
1028         pruner_train=picoclvr_pruner_train,
1029         pruner_eval=picoclvr_pruner_eval,
1030     )
1031
1032 elif args.task == "mnist":
1033     task = TaskMNIST(
1034         batch_size=args.batch_size,
1035         device=device,
1036     )
1037
1038 elif args.task == "maze":
1039     task = TaskMaze(
1040         nb_train_samples=args.nb_train_samples,
1041         nb_test_samples=args.nb_test_samples,
1042         batch_size=args.batch_size,
1043         height=args.maze_height,
1044         width=args.maze_width,
1045         nb_walls=args.maze_nb_walls,
1046         device=device,
1047     )
1048
1049 elif args.task == "snake":
1050     task = TaskSnake(
1051         nb_train_samples=args.nb_train_samples,
1052         nb_test_samples=args.nb_test_samples,
1053         batch_size=args.batch_size,
1054         height=args.snake_height,
1055         width=args.snake_width,
1056         nb_colors=args.snake_nb_colors,
1057         length=args.snake_length,
1058         prompt_length=args.snake_length // 2,
1059         device=device,
1060     )
1061
1062 elif args.task == "stack":
1063     task = TaskStack(
1064         nb_train_samples=args.nb_train_samples,
1065         nb_test_samples=args.nb_test_samples,
1066         batch_size=args.batch_size,
1067         nb_steps=args.stack_nb_steps,
1068         nb_stacks=args.stack_nb_stacks,
1069         nb_digits=args.stack_nb_digits,
1070         fraction_values_for_train=args.stack_fraction_values_for_train,
1071         device=device,
1072     )
1073
1074 else:
1075     raise ValueError(f"Unknown task {args.task}")
1076
1077 ######################################################################
1078
1079 log_string(f"device {device}")
1080
1081 vocabulary_size = task.vocabulary_size()
1082
1083 log_string(f"vocabulary_size {vocabulary_size}")
1084
1085 ##############################
1086
1087 model = mygpt.MyGPT(
1088     vocabulary_size=vocabulary_size,
1089     dim_model=args.dim_model,
1090     dim_keys=args.dim_keys,
1091     dim_hidden=args.dim_hidden,
1092     nb_heads=args.nb_heads,
1093     nb_blocks=args.nb_blocks,
1094     causal=True,
1095     dropout=args.dropout,
1096 )
1097
1098 model.to(device)
1099
1100 nb_parameters = sum(p.numel() for p in model.parameters())
1101 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
1102
1103 ######################################################################
1104
1105 nb_epochs_finished = 0
1106
1107 if args.no_checkpoint:
1108     log_string(f"not trying to load checkpoint.")
1109
1110 else:
1111     try:
1112         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1113         checkpoint = torch.load(checkpoint_name)
1114         nb_epochs_finished = checkpoint["nb_epochs_finished"]
1115         model.load_state_dict(checkpoint["model_state"])
1116         torch.set_rng_state(checkpoint["rng_state"])
1117         if torch.cuda.is_available():
1118             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
1119
1120         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
1121
1122     except FileNotFoundError:
1123         log_string("starting from scratch.")
1124
1125     except:
1126         log_string("error when loading the checkpoint.")
1127         exit(1)
1128
1129 ######################################################################
1130
1131 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
1132
1133 token_count = 0
1134 for input in task.batches(split="train"):
1135     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
1136 token_probas = token_count / token_count.sum()
1137 entropy = -torch.xlogy(token_probas, token_probas).sum()
1138 train_set_perplexity = math.exp(entropy)
1139
1140 ##############################
1141
1142 if args.learning_rate_schedule == "cos":
1143     learning_rate_schedule = {}
1144     for n_epoch in range(args.nb_epochs):
1145         u = n_epoch / args.nb_epochs * math.pi
1146         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
1147 else:
1148     u = {
1149         int(k): float(v)
1150         for k, v in [
1151             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
1152         ]
1153     }
1154
1155     learning_rate_schedule = {}
1156     learning_rate = args.learning_rate
1157     for n_epoch in range(args.nb_epochs):
1158         if n_epoch in u:
1159             learning_rate = u[n_epoch]
1160         learning_rate_schedule[n_epoch] = learning_rate
1161
1162 log_string(f"learning_rate_schedule {learning_rate_schedule}")
1163
1164 ##############################
1165
1166 nb_samples_seen = 0
1167
1168 if nb_epochs_finished >= nb_epochs:
1169     task.produce_results(nb_epochs_finished, model)
1170
1171 for n_epoch in range(nb_epochs_finished, nb_epochs):
1172     learning_rate = learning_rate_schedule[n_epoch]
1173
1174     log_string(f"learning_rate {learning_rate}")
1175
1176     if args.optim == "sgd":
1177         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
1178     elif args.optim == "adam":
1179         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
1180     elif args.optim == "adamw":
1181         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
1182     else:
1183         raise ValueError(f"Unknown optimizer {args.optim}.")
1184
1185     model.train()
1186
1187     nb_train_samples, acc_train_loss = 0, 0.0
1188
1189     for input in task.batches(split="train"):
1190         input = input.to(device)
1191         output = model(mygpt.BracketedSequence(input)).x
1192         loss = F.cross_entropy(output.transpose(1, 2), input)
1193         acc_train_loss += loss.item() * input.size(0)
1194         nb_train_samples += input.size(0)
1195         nb_samples_seen += input.size(0)
1196
1197         optimizer.zero_grad()
1198         loss.backward()
1199         optimizer.step()
1200
1201     with torch.autograd.no_grad():
1202         model.eval()
1203
1204         nb_test_samples, acc_test_loss = 0, 0.0
1205
1206         for input in task.batches(split="test"):
1207             input = input.to(device)
1208
1209             output = model(mygpt.BracketedSequence(input)).x
1210             loss = F.cross_entropy(output.transpose(1, 2), input)
1211             acc_test_loss += loss.item() * input.size(0)
1212             nb_test_samples += input.size(0)
1213
1214         train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
1215         test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
1216
1217         log_string(
1218             f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
1219         )
1220
1221         task.produce_results(n_epoch, model)
1222
1223     checkpoint = {
1224         "nb_epochs_finished": n_epoch + 1,
1225         "model_state": model.state_dict(),
1226         "rng_state": torch.get_rng_state(),
1227     }
1228
1229     if torch.cuda.is_available():
1230         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
1231
1232     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1233     torch.save(checkpoint, checkpoint_name)
1234     log_string(f"saved checkpoint {checkpoint_name}")
1235
1236 ######################################################################