Update.
[mygptrnn.git] / mygpt.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # This is an implementation from scratch of a "GPT", that is a model
9 # composed of several causal self-attention blocks. It is equipped
10 # with a caching mechanism for keys and values to avoid a O(N^3) cost
11 # for auto-regression.
12
13 # This implementation is equipped with RNN layers to replace the MHA
14
15 import math, warnings
16
17 import torch, einops
18
19 from torch import nn
20 from torch.nn import functional as F
21
22 import ffutils
23
24 # import memload
25
26 ######################################################################
27
28 # A BracketedSequence is a BxTx... tensor with a first and a nb time
29 # steps to compute.
30
31 # Modules able to process it expect that they will have to process a
32 # first bracket starting at t=0, followed by a succession of brackets
33 # that move forward in time, do not overlap, and cover the axis T with
34 # no holes.
35 #
36 # Although it is more general, for a classical prompt-conditioned
37 # auto-regressive process it will be a first bracket starting at 0 and
38 # of arbitrary length for the "prompt", followed by brackets of length
39 # 1 for the successive tokens.
40 #
41 # Modules able to process brackets may implement a cache that is
42 # resetted when init_cache is True
43
44
45 class BracketedSequence:
46     def __init__(self, x, first=None, nb=None, init_cache=None):
47         self.x = x
48         assert (first is None and nb is None and init_cache is None) or (
49             first is not None and nb is not None and init_cache is not None
50         )
51
52         self.first = 0 if first is None else first
53         self.nb = x.size(1) if nb is None else nb
54         self.init_cache = True if init_cache is None else init_cache
55
56     def slice(self):
57         return self.x[:, self.first : self.first + self.nb]
58
59     def complete(self):
60         return self.first == 0 and self.nb == self.x.size(1)
61
62
63 ######################################################################
64
65
66 class CacheWrapper(nn.Module):
67     def __init__(self, *f):
68         super().__init__()
69         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
70
71     def forward(self, bs):
72         if bs.init_cache:
73             y = self.f(bs.slice())
74             self.cache_y = y.new(*((y.size(0), bs.x.size(1)) + y.size()[2:]))
75             self.cache_y[:, bs.first : bs.first + bs.nb] = y
76         else:
77             assert tuple(bs.x.size()[:2]) == tuple(self.cache_y.size()[:2])
78             assert bs.first + bs.nb <= self.cache_y.size(1)
79             self.cache_y[:, bs.first : bs.first + bs.nb] = self.f(bs.slice())
80
81         return BracketedSequence(self.cache_y, bs.first, bs.nb, bs.init_cache)
82
83
84 ##############################
85
86
87 class WithResidual(nn.Module):
88     def __init__(self, *f):
89         super().__init__()
90         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
91
92     def forward(self, bs):
93         return BracketedSequence(bs.x + self.f(bs).x, bs.first, bs.nb, bs.init_cache)
94
95
96 ##############################
97
98
99 class AddPositionalEncoding(nn.Module):
100     def __init__(self, len_max):
101         super().__init__()
102         self.len_max = len_max
103
104     # [Vaswani et al 2018] PE_{t,2i} = sin(t/(L^{2i/D})), PE_{t,2i+1} = cos(t/(L^{2i/D}))
105
106     def forward(self, bs):
107         if bs.init_cache:
108             t = torch.arange(bs.x.size(1), dtype=bs.x.dtype, device=bs.x.device)[
109                 :, None
110             ]
111             j = torch.arange(bs.x.size(2), dtype=bs.x.dtype, device=bs.x.device)[
112                 None, :
113             ]
114             k = j % 2
115             self.pe = torch.sin(
116                 t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
117             )
118             self.cache_y = bs.x.new(bs.x.size())
119
120         self.cache_y[:, bs.first : bs.first + bs.nb] = (
121             bs.slice() + self.pe[bs.first : bs.first + bs.nb]
122         )
123
124         return BracketedSequence(self.cache_y, bs.first, bs.nb, bs.init_cache)
125
126
127 import pscan
128
129
130 # X is /.../xTxD   A is /.../xT   Y_init is /.../xD
131
132
133 def pscan_dim(A, X, Y_init, dim=-2):
134     s = X.size()
135     a, T, b = s[:dim].numel(), s[dim], s[dim + 1 :].numel()
136
137     A = A.reshape(a, T, *s[dim + 1 : -1])
138     X = X.reshape(a, T, *s[dim + 1 : -1], -1)
139
140     if Y_init is None:
141         Y_init = X.new_zeros(a, *s[dim + 1 : -1], X.size(-1))
142     else:
143         Y_init = Y_init.reshape(a, *s[dim + 1 : -1], -1)
144
145     Y = pscan.pscan(A, X, Y_init).reshape(s)
146
147     return Y
148
149
150 def pscan_shape(A, X, Y_init):
151     s = X.size()
152     A = A.reshape(-1, s[-2])
153     X = X.reshape(-1, s[-2], s[-1])
154
155     if Y_init is None:
156         Y_init = X.new_zeros(X.size(0), s[-1])
157     else:
158         Y_init = Y_init.reshape(-1, s[-1])
159
160     Y = pscan.pscan(A, X, Y_init).reshape(s)
161
162     return Y
163
164
165 def nsum_shape(X, Y_init):
166     s = X.size()
167     X = X.reshape(-1, s[-2], s[-1])  # ntd
168
169     Y = 0 if Y_init is None else Y_init.reshape(-1, s[-1])
170     result = []
171
172     for k in range(X.size(1)):
173         Y = Y + X[:, k]
174         Y = Y / Y.norm(dim=-1, keepdim=True).clamp(min=1)
175         result.append(Y)
176
177     return torch.cat(result, dim=1).reshape(s)
178
179
180 ##############################
181
182
183 class DumbRec(nn.Module):
184     def __init__(
185         self,
186         dim_model,
187         dim_qk,
188         dim_v,
189         nb_heads,
190         nb_lines,
191         attention_dropout=0.0,
192         len_max=1e5,
193     ):
194         super().__init__()
195
196         def randw(*d):
197             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
198
199         self.nb_lines = nb_lines
200         self.attention_dropout = attention_dropout
201
202         self.k_star = randw(nb_lines, dim_qk)
203
204         self.w_qw = randw(nb_heads, dim_qk, dim_model)
205         self.w_qr = randw(nb_heads, dim_qk, dim_model)
206         # self.w_k = randw(nb_heads, dim_qk, dim_model)
207         self.w_v = randw(nb_heads, dim_v, dim_model)
208         self.w_o = randw(dim_v * nb_heads, dim_model)
209
210     def reset_inner_loss(self):
211         self.acc_attention = 0
212         self.acc_nb = 0
213
214     def get_inner_loss(self):
215         warnings.warn("l2 regularization", RuntimeWarning)
216         return (self.acc_attention / self.acc_nb).pow(2).sum()
217         # return torch.tensor([0], device=self.w_qw.device)
218
219     def forward(self, bs):
220         x_q, t0, t1 = bs.x, bs.first, bs.first + bs.nb
221
222         if bs.init_cache:
223             self.rec_v = x_q.new_zeros(
224                 x_q.size(0), self.nb_lines, x_q.size(1), self.w_v.size(1)
225             )
226             # self.rec_k = x_q.new_zeros(
227             # x_q.size(0), self.nb_lines, x_q.size(1), self.w_k.size(1)
228             # )
229             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
230
231         ######################################################################
232         # Prepare the keys
233
234         k_star = self.k_star[:, None, :].expand(-1, t1 - t0, -1)
235
236         warnings.warn("rotating key barrel", RuntimeWarning)
237         k_star = self.k_star[:, None, :].expand(-1, x_q.size(1), -1)
238         t_barrel = torch.arange(t0, t1, device=k_star.device)
239         t_barrel = t_barrel[None, :].expand(k_star.size(0), t1 - t0)
240         l_barrel = (
241             torch.arange(k_star.size(0), device=k_star.device)[:, None] + t_barrel
242         ) % k_star.size(0)
243         k_star = k_star[l_barrel, t_barrel]
244
245         ######################################################################
246         # Compute the recurrent state
247
248         qw = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_qw)
249
250         v = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_v)
251         # k = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_k)
252
253         aw = torch.einsum(
254             "nhtd,ltd->nhlt",
255             qw,
256             k_star,
257         ) / math.sqrt(self.w_qw.size(1))
258
259         aw = aw.softmax(dim=2)  # nhlt
260
261         if self.train:
262             self.acc_attention += aw.sum(dim=(0, 1, 3))
263             self.acc_nb += aw.size(0) * aw.size(1) * aw.size(3)
264
265         aw = F.dropout(aw, self.attention_dropout, self.training)
266
267         A = 1 - aw.sum(dim=1)  # nlt
268
269         V = torch.einsum("nhlt,nhtd->nltd", aw, v).contiguous()
270         # K = torch.einsum("nhlt,nhtd->nltd", aw, k).contiguous()
271
272         if t0 == 0:
273             V0 = None
274             # K0 = None
275         else:
276             V0 = self.rec_v[:, :, t0 - 1]
277             # K0 = self.rec_k[:, :, t0 - 1]
278
279         self.rec_v[:, :, t0:t1] = pscan_shape(A, V, V0)
280         # self.rec_k[:, :, t0:t1] = pscan_shape(A, K, K0)
281
282         ######################################################################
283         # compute the readout
284
285         qr = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_qr)
286
287         ar = torch.einsum(
288             "nhtd,ld->nhlt",
289             qr,
290             # self.rec_k[:, :, t0:t1],
291             self.k_star,
292         ) / math.sqrt(self.w_qr.size(1))
293
294         ar = ar.softmax(dim=2)  # nhlt
295
296         ar = F.dropout(ar, self.attention_dropout, self.training)
297
298         y = torch.einsum(
299             "nhlt,nltd->nthd",
300             ar,
301             self.rec_v[:, :, t0:t1],
302         ).flatten(2)
303
304         self.cache_y[:, t0:t1] = y @ self.w_o
305
306         return BracketedSequence(self.cache_y, t0, t1 - t0, bs.init_cache)
307
308
309 ##############################
310
311
312 class KVRec(nn.Module):
313     def __init__(
314         self,
315         dim_model,
316         dim_qk,
317         dim_v,
318         nb_heads,
319         nb_lines,
320         attention_dropout=0.0,
321         len_max=1e5,
322     ):
323         super().__init__()
324
325         def randw(*d):
326             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
327
328         self.nb_lines = nb_lines
329         self.attention_dropout = attention_dropout
330
331         self.k_star = randw(nb_lines, dim_qk)
332
333         self.w_qw = randw(nb_heads, dim_qk, dim_model)
334         self.w_qr = randw(nb_heads, dim_qk, dim_model)
335         self.w_k = randw(nb_heads, dim_qk, dim_model)
336         self.w_v = randw(nb_heads, dim_v, dim_model)
337         self.w_o = randw(dim_v * nb_heads, dim_model)
338
339     def reset_inner_loss(self):
340         self.acc_attention = 0
341         self.acc_nb = 0
342
343     def get_inner_loss(self):
344         warnings.warn("l2 regularization", RuntimeWarning)
345         return (self.acc_attention / self.acc_nb).pow(2).sum()
346         # return torch.tensor([0], device=self.w_qw.device)
347         # warnings.warn("side regularization", RuntimeWarning)
348         # return (
349         # (0.5 / self.nb_lines - self.acc_attention / self.acc_nb).clamp(min=0).sum()
350         # )
351         # return torch.tensor([0], device=self.w_qw.device)
352
353     def forward(self, bs):
354         x_q, t0, t1 = bs.x, bs.first, bs.first + bs.nb
355
356         if bs.init_cache:
357             self.rec_v = x_q.new_zeros(
358                 x_q.size(0), self.nb_lines, x_q.size(1), self.w_v.size(1)
359             )
360             self.rec_k = x_q.new_zeros(
361                 x_q.size(0), self.nb_lines, x_q.size(1), self.w_k.size(1)
362             )
363             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
364
365         ######################################################################
366         # Prepare the keys
367
368         k_star = self.k_star[:, None, :].expand(-1, t1 - t0, -1)
369
370         warnings.warn("rotating key barrel", RuntimeWarning)
371         k_star = self.k_star[:, None, :].expand(-1, x_q.size(1), -1)
372         t_barrel = torch.arange(t0, t1, device=k_star.device)
373         t_barrel = t_barrel[None, :].expand(k_star.size(0), t1 - t0)
374         l_barrel = (
375             torch.arange(k_star.size(0), device=k_star.device)[:, None] + t_barrel
376         ) % k_star.size(0)
377         k_star = k_star[l_barrel, t_barrel]
378
379         ######################################################################
380         # Compute the recurrent state
381
382         qw = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_qw)
383
384         v = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_v)
385         k = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_k)
386
387         aw = torch.einsum(
388             "nhtd,ltd->nhlt",
389             qw,
390             k_star,
391         ) / math.sqrt(self.w_qw.size(1))
392
393         aw = aw.softmax(dim=2)  # nhlt
394
395         if self.train:
396             # We want all the memory lines to be used similarly
397             self.acc_attention += aw.sum(dim=(0, 1, 3))  # Sum accross NxHx_xT
398             self.acc_nb += aw.size(0) * aw.size(1) * aw.size(3)
399
400         aw = F.dropout(aw, self.attention_dropout, self.training)
401
402         A = 1 - aw.sum(dim=1)  # nlt
403
404         V = torch.einsum("nhlt,nhtd->nltd", aw, v).contiguous()
405         K = torch.einsum("nhlt,nhtd->nltd", aw, k).contiguous()
406
407         if t0 == 0:
408             V0 = None
409             K0 = None
410         else:
411             V0 = self.rec_v[:, :, t0 - 1]
412             K0 = self.rec_k[:, :, t0 - 1]
413
414         self.rec_v[:, :, t0:t1] = pscan_shape(A, V, V0)
415         self.rec_k[:, :, t0:t1] = pscan_shape(A, K, K0)
416
417         ######################################################################
418         # compute the readout
419
420         qr = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_qr)
421
422         ar = torch.einsum(
423             "nhtd,nltd->nhlt",
424             qr,
425             self.rec_k[:, :, t0:t1],
426         ) / math.sqrt(self.w_qr.size(1))
427
428         ar = ar.softmax(dim=2)  # nhlt
429
430         ar = F.dropout(ar, self.attention_dropout, self.training)
431
432         y = torch.einsum(
433             "nhlt,nltd->nthd",
434             ar,
435             self.rec_v[:, :, t0:t1],
436         ).flatten(2)
437
438         self.cache_y[:, t0:t1] = y @ self.w_o
439
440         return BracketedSequence(self.cache_y, t0, t1 - t0, bs.init_cache)
441
442
443 ##############################
444
445
446 # Returns a tensor with an additional index at rank win_dim, that move
447 # along the same dimension as dim, on a domain {0...win_size-1}, and
448 # dim is restricted on a domain reduced by win_size-1 values.
449
450
451 def moving_window(x, dim, win_dim, win_size):
452     size, stride = x.size(), x.stride()
453     size = size[:dim] + (size[dim] - win_size + 1,) + size[dim + 1 :]
454     size = size[:win_dim] + (win_size,) + size[win_dim:]
455     stride = stride[:win_dim] + (stride[dim],) + stride[win_dim:]
456
457     return x.as_strided(size=size, stride=stride)
458
459
460 ##############################
461
462
463 class Caterpillar(nn.Module):
464     def __init__(
465         self,
466         dim_model,
467         dim_qk,
468         dim_v,
469         nb_heads,
470         caterpillar_length,
471         caterpillar_height,
472         attention_dropout=0.0,
473         len_max=1e5,
474     ):
475         super().__init__()
476
477         warnings.warn("Caterpillar", RuntimeWarning)
478
479         def randw(*d, amplitude=None):
480             if amplitude is None:
481                 amplitude = 1 / math.sqrt(d[-1])
482             return nn.Parameter(amplitude * torch.randn(*d))
483
484         self.caterpillar_length = caterpillar_length
485         self.caterpillar_height = caterpillar_height
486         self.attention_dropout = attention_dropout
487
488         self.proba_gate_dropout = 0.0
489
490         self.w_G = randw(nb_heads, caterpillar_height, dim_model)
491         self.b_G = nn.Parameter(
492             torch.full(
493                 (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1)
494             )
495         )
496
497         self.w_K = randw(nb_heads, dim_qk, dim_model)
498         self.w_V = randw(nb_heads, dim_v, dim_model)
499         self.w_Q = randw(nb_heads, dim_qk, dim_model)
500         self.w_O = randw(dim_v * nb_heads, dim_model)
501
502         self.init_K_rec = randw(
503             caterpillar_height,
504             caterpillar_length,
505             dim_qk,
506         )
507         self.init_V_rec = randw(
508             caterpillar_height,
509             caterpillar_length,
510             dim_v,
511         )
512
513     def reset_inner_loss(self):
514         self.acc_attention = 0
515         self.acc_nb = 0
516
517     def get_inner_loss(self):
518         # warnings.warn("l2 regularization", RuntimeWarning)
519         # return (self.acc_attention / self.acc_nb).pow(2).sum()
520         return torch.tensor([0], device=self.w_Q.device)
521
522     def forward(self, bs):
523         # Dimensions to make the source a bit clearer, that's needed
524
525         X, t0, t1 = bs.slice(), bs.first, bs.first + bs.nb
526
527         N = bs.x.size(0)
528         T = bs.x.size(1)
529         H = self.w_V.size(0)
530         DV = self.w_V.size(1)
531         DK = self.w_K.size(1)
532         DM = self.w_O.size(1)
533         CH = self.caterpillar_height
534         CL = self.caterpillar_length
535
536         assert (
537             t0 >= CL and (t1 - t0) % CL == 0
538         ), f"bs.first should be greater than caterpillar_length, and bs.nb should be a multiple of caterpillar_length"
539
540         # We cache values to deal efficiently with auto-regression
541
542         if bs.init_cache:
543             self.rec_V = X.new_zeros(N, CH, T, DV)
544             self.rec_K = X.new_zeros(N, CH, T, DK)
545             # We start the recurrent sequences with optimizable
546             # initial values. No idea if it helps.
547             self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :]
548             self.rec_K[:, :, t0 - CL : t0] = self.init_K_rec[None, :, :, :]
549
550             self.cache_Y = X.new_zeros(N, T, DM)
551
552         V = torch.einsum("ntc,hdc->nhtd", X, self.w_V)
553         K = torch.einsum("ntc,hdc->nhtd", X, self.w_K)
554
555         ######################################################################
556         # Compute the recurrent state
557
558         # This is the Gating sequence that modulates the storing of
559         # the new key and value in the CH pairs of the current
560         # stack. There are CH independent gating values, which means
561         # that the current K/V may be stored in multiple pairs of the
562         # recurrent state, or not at all.
563
564         G = (
565             torch.einsum("ntc,hrc->nhrt", X, self.w_G) + self.b_G[None, :, :, None]
566         ).sigmoid()
567
568         ######################################################################
569         # The "flashbacks"
570
571         if self.training and self.proba_gate_dropout > 0.0:
572             # This is a better implementation of "flashbacks".
573
574             # G is NxHxExT where e is the caterpillar's row.
575
576             warnings.warn("gate dropout", RuntimeWarning)
577             epsilon = 0.5
578
579             dropout_head = (
580                 (torch.rand(N, H, 1, t1 - t0, device=G.device).sort(dim=3).indices == 0)
581                 .expand_as(G)
582                 .float()
583             )
584
585             dropout_tail = dropout_head.cumsum(dim=3) - dropout_head
586
587             dropout_active = (
588                 torch.rand(N, 1, 1, 1, device=G.device) < self.proba_gate_dropout
589             ).long()
590
591             dropout_head *= dropout_active
592             dropout_tail *= dropout_active
593
594             G = (
595                 G
596                 # + dropout_head * (1 - epsilon - G.detach())
597                 - dropout_tail * G.detach()
598             )
599
600         ######################################################################
601
602         # We prepare the arguments for the parallel scan
603
604         # Clip the gating to avoid values greater than 1 when several
605         # heads hit the same row
606
607         G = G / G.sum(1, keepdim=True).clamp(min=1)
608
609         A = 1 - G.sum(1)
610         gated_V = torch.einsum("nhrt,nhtd->nrtd", G, V)
611         gated_K = torch.einsum("nhrt,nhtd->nrtd", G, K)
612
613         # We start from cached values, which matters in inference
614
615         init_rec_V = self.rec_V[:, :, t0 - CL : t0]
616         init_rec_K = self.rec_K[:, :, t0 - CL : t0]
617
618         #################################################################
619         # Associative scan
620
621         # Here there is a trick: Since the stack at position t is
622         # computed by updating that at position t-CL, the parallel
623         # scan operates with a period of CL. To do so we split the
624         # sequence indexing in two axes, the second of size CL, and
625         # run the parallel scan using the first as the sequence index.
626
627         A = A.unflatten(2, (-1, CL))
628         gated_V = gated_V.unflatten(2, (-1, CL))
629         gated_K = gated_K.unflatten(2, (-1, CL))
630
631         next_V = pscan_dim(A, gated_V, init_rec_V, dim=2)
632         next_K = pscan_dim(A, gated_K, init_rec_K, dim=2)
633
634         self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3)
635         self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3)
636
637         ######################################################################
638         # compute the readout
639
640         Q = torch.einsum("ntc,hdc->nhtd", X, self.w_Q)
641
642         # We build tensors NxHxTxFxL where N is the sample index, H
643         # the head, T the time, F the row in the caterpillar, and L
644         # the column in the caterpillar
645
646         windowed_V = moving_window(
647             self.rec_V[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
648         )
649
650         windowed_K = moving_window(
651             self.rec_K[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
652         )
653
654         # We have an attention score for each of the CHxCL values
655
656         ar = torch.einsum(
657             "nhtd,nftld->nhtfl",
658             Q,
659             windowed_K,
660         ) / math.sqrt(DK)
661
662         # softmax can operate only on one dimension, hence the
663         # flattening
664
665         ar = ar.flatten(3).softmax(dim=3).view(ar.size())
666
667         ar = F.dropout(ar, self.attention_dropout, self.training)
668
669         # Compute the output for each head, flatten to concatenate
670
671         Y = torch.einsum(
672             "nhtfl,nftld->nthd",
673             ar,
674             windowed_V,
675         ).flatten(2)
676
677         # Compute the final output
678
679         self.cache_Y[:, t0:t1] = Y @ self.w_O
680
681         return BracketedSequence(self.cache_Y, t0, t1 - t0, bs.init_cache)
682
683
684 ##############################
685
686
687 class QKVAttention(nn.Module):
688     def __init__(
689         self,
690         dim_model,
691         dim_qk,
692         dim_v,
693         nb_heads=1,
694         causal=False,
695         attention_dropout=0.0,
696     ):
697         super().__init__()
698
699         def randw(*d):
700             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
701
702         self.causal = causal
703         self.attention_dropout = attention_dropout
704         self.record_attention = False
705
706         self.w_q = randw(nb_heads, dim_qk, dim_model)
707         self.w_k = randw(nb_heads, dim_qk, dim_model)
708         self.w_v = randw(nb_heads, dim_v, dim_model)
709         self.w_o = randw(dim_v * nb_heads, dim_model)
710
711     def forward(self, bs):
712         x_q = bs.x
713
714         assert (
715             self.causal or bs.complete()
716         ), "Partial evaluation is only possible for causal models"
717
718         if bs.init_cache:
719             self.cache_k = x_q.new_zeros(
720                 x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
721             )
722             self.cache_v = x_q.new_zeros(
723                 x_q.size(0), self.w_v.size(0), x_q.size(1), self.w_v.size(1)
724             )
725             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
726
727         q = torch.einsum("ntc,hdc->nhtd", x_q[:, bs.first : bs.first + bs.nb], self.w_q)
728
729         self.cache_k[:, :, bs.first : bs.first + bs.nb] = torch.einsum(
730             "ntc,hdc->nhtd", x_q[:, bs.first : bs.first + bs.nb], self.w_k
731         )
732         self.cache_v[:, :, bs.first : bs.first + bs.nb] = torch.einsum(
733             "ntc,hdc->nhtd", x_q[:, bs.first : bs.first + bs.nb], self.w_v
734         )
735
736         a = torch.einsum(
737             "nhtd,nhsd->nhts", q, self.cache_k[:, :, : bs.first + bs.nb]
738         ) / math.sqrt(self.w_q.size(1))
739
740         if self.causal:
741             if bs.init_cache:
742                 self.cache_attzero = (
743                     torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
744                     < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
745                 )
746             a = a.masked_fill(
747                 self.cache_attzero[
748                     :, :, bs.first : bs.first + bs.nb, : bs.first + bs.nb
749                 ],
750                 float("-inf"),
751             )
752
753         a = a.softmax(dim=3)
754
755         if self.record_attention:
756             self.a = a
757
758         a = F.dropout(a, self.attention_dropout, self.training)
759
760         y = torch.einsum(
761             "nhts,nhsd->nthd", a, self.cache_v[:, :, : bs.first + bs.nb]
762         ).flatten(2)
763
764         self.cache_y[:, bs.first : bs.first + bs.nb] = y @ self.w_o
765
766         return BracketedSequence(self.cache_y, bs.first, bs.nb, bs.init_cache)
767
768
769 ##############################
770
771
772 class MyGPT(nn.Module):
773     def __init__(
774         self,
775         vocabulary_size,
776         dim_model,
777         dim_keys,
778         dim_hidden,
779         nb_heads,
780         nb_blocks,
781         nb_lines=None,
782         caterpillar_height=None,
783         causal=False,
784         dropout=0.0,
785         len_max=1e5,
786         attention_layer="kvrec",
787     ):
788         super().__init__()
789
790         assert attention_layer in {
791             "mha",
792             "dumbrec",
793             "kvrec",
794             "caterpillar",
795         }, f"Unknown attention operator {attention_layer}."
796
797         if attention_layer == "caterpillar":
798             assert nb_lines % caterpillar_height == 0
799             self.caterpillar_length = nb_lines // caterpillar_height
800             self.caterpillar_height = caterpillar_height
801         else:
802             self.caterpillar_length = -1
803             self.caterpillar_height = -1
804
805         assert dim_model % nb_heads == 0
806
807         self.embedding = nn.Sequential(
808             CacheWrapper(nn.Embedding(vocabulary_size, dim_model), nn.Dropout(dropout)),
809             AddPositionalEncoding(len_max),
810         )
811
812         trunk_blocks = []
813
814         def attlayer():
815             if attention_layer == "mha":
816                 return QKVAttention(
817                     dim_model=dim_model,
818                     dim_qk=dim_keys,
819                     dim_v=dim_model // nb_heads,
820                     nb_heads=nb_heads,
821                     causal=causal,
822                     attention_dropout=dropout,
823                 )
824             elif attention_layer == "dumbrec":
825                 return DumbRec(
826                     dim_model=dim_model,
827                     dim_qk=dim_keys,
828                     dim_v=dim_model // nb_heads,
829                     nb_heads=nb_heads,
830                     nb_lines=nb_lines,
831                     attention_dropout=dropout,
832                 )
833             elif attention_layer == "kvrec":
834                 return KVRec(
835                     dim_model=dim_model,
836                     dim_qk=dim_keys,
837                     dim_v=dim_model // nb_heads,
838                     nb_heads=nb_heads,
839                     nb_lines=nb_lines,
840                     attention_dropout=dropout,
841                 )
842             elif attention_layer == "caterpillar":
843                 return Caterpillar(
844                     dim_model=dim_model,
845                     dim_qk=dim_keys,
846                     dim_v=dim_model // nb_heads,
847                     nb_heads=nb_heads,
848                     caterpillar_length=self.caterpillar_length,
849                     caterpillar_height=self.caterpillar_height,
850                     attention_dropout=dropout,
851                 )
852             else:
853                 raise ValueError(f"Unknown attention type {attention_layer}.")
854
855         for b in range(nb_blocks):
856             trunk_blocks += [
857                 WithResidual(
858                     CacheWrapper(nn.LayerNorm((dim_model,))),
859                     attlayer(),
860                 ),
861                 WithResidual(
862                     CacheWrapper(
863                         nn.LayerNorm((dim_model,)),
864                         nn.Linear(in_features=dim_model, out_features=dim_hidden),
865                         nn.ReLU(),
866                         nn.Linear(in_features=dim_hidden, out_features=dim_model),
867                         nn.Dropout(dropout),
868                     ),
869                 ),
870             ]
871
872         self.trunk = nn.Sequential(*trunk_blocks)
873
874         self.readout = CacheWrapper(
875             nn.Linear(in_features=dim_model, out_features=vocabulary_size)
876         )
877
878         with torch.no_grad():
879             for m in self.modules():
880                 if isinstance(m, nn.Embedding):
881                     m.weight.normal_(mean=0, std=2e-2)
882                 elif isinstance(m, nn.LayerNorm):
883                     m.bias.zero_()
884                     m.weight.fill_(1.0)
885
886         self.reset_inner_loss()
887
888     def forward(self, bs):
889         bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb, bs.init_cache)
890
891         # To make the code simpler in the Caterpillar layer, we pad
892         # here. It's unclear if/how much it hurts computationaly by
893         # increasing the sequence length for the other layers
894
895         if self.caterpillar_length > 0:
896             original_nb = bs.nb
897             if bs.nb % self.caterpillar_length > 0:
898                 bs.nb += self.caterpillar_length - bs.nb % self.caterpillar_length
899
900             bs = BracketedSequence(
901                 F.pad(bs.x, (self.caterpillar_length, self.caterpillar_length)),
902                 bs.first + self.caterpillar_length,
903                 bs.nb,
904                 bs.init_cache,
905             )
906
907         bs = self.embedding(bs)
908         bs = self.trunk(bs)
909         bs = self.readout(bs)
910
911         if self.caterpillar_length > 0:
912             bs = BracketedSequence(
913                 F.pad(bs.x, (0, 0, -self.caterpillar_length, -self.caterpillar_length)),
914                 bs.first - self.caterpillar_length,
915                 original_nb,
916                 bs.init_cache,
917             )
918
919         return bs
920
921     # ar_mask is a tensor with 0s and 1s, of same shape as input, with
922     # 1s where tokens should be generated. The others are kept
923     # unchanged.
924
925     def masked_inplace_autoregression(
926         self,
927         input_src,
928         ar_mask_src,
929         forbidden_tokens=None,
930         deterministic_synthesis=False,
931     ):
932         input = input_src.to(self.readout.f.weight.device)
933         ar_mask = ar_mask_src.to(self.readout.f.weight.device)
934         to_generate = (ar_mask.sum(0) > 0).nonzero()
935         if to_generate.min() > 0:
936             self(
937                 BracketedSequence(input, 0, to_generate.min(), True)
938             )  # Needed to initialize the model's cache
939         for s in range(to_generate.min(), to_generate.max() + 1):
940             output = self(BracketedSequence(input, s, 1, s == 0)).x
941             logits = output[:, s]
942             if forbidden_tokens is not None:
943                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
944             if deterministic_synthesis:
945                 t_next = logits.argmax(1)
946             else:
947                 dist = torch.distributions.categorical.Categorical(logits=logits)
948                 t_next = dist.sample()
949             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
950
951         input_src.copy_(input)
952
953     def reset_inner_loss(self):
954         for m in self.modules():
955             if m is not self and hasattr(m, "reset_inner_loss"):
956                 m.reset_inner_loss()
957
958     def get_inner_loss(self):
959         l = torch.tensor([0.0], device=self.readout.f.weight.device)
960         for m in self.modules():
961             if m is not self and hasattr(m, "get_inner_loss"):
962                 l += m.get_inner_loss()
963         return l
964
965     def record_attention(self, v=True):
966         for m in self.modules():
967             if isinstance(m, QKVAttention):
968                 m.record_attention = v
969
970     def retrieve_attention(self):
971         a = []
972         for m in self.modules():
973             if isinstance(m, QKVAttention):
974                 a.append(m.a)
975         return a
976
977
978 ######################################################################
979
980 if __name__ == "__main__":
981     print("Basic check.")
982
983     m = Caterpillar(
984         dim_model=4,
985         dim_qk=3,
986         dim_v=7,
987         nb_heads=1,
988         caterpillar_length=7,
989         caterpillar_height=3,
990         attention_dropout=0.0,
991     )
992
993     m.reset_inner_loss()
994     x = torch.randn(1, 21 + 2 * 7, 4)
995     y1 = m(BracketedSequence(x, first=7, nb=21, init_cache=True)).x[:, 7:28]
996     y2 = m(BracketedSequence(x, first=7, nb=21, init_cache=True)).x[:, 7:28]
997     y3a = m(BracketedSequence(x, first=7, nb=14, init_cache=True)).x[:, 7:21]
998     y3b = m(BracketedSequence(x, first=21, nb=7, init_cache=False)).x[:, 21:28]
999     print((y1 - y2).abs().max())
1000     print((y1 - torch.cat([y3a, y3b], dim=1)).abs().max())
1001     exit(0)
1002
1003     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
1004
1005     vocabulary_size = 128
1006     x = torch.randint(vocabulary_size, (6, 1024))
1007
1008     model = MyGPT(
1009         vocabulary_size=vocabulary_size,
1010         dim_model=512,
1011         dim_keys=64,
1012         dim_hidden=2048,
1013         nb_heads=8,
1014         nb_lines=128,
1015         nb_blocks=12,
1016         dropout=0.1,
1017         causal=True,
1018     )
1019
1020     x = x.to(device)
1021     model.to(device)
1022
1023     import time, sys
1024
1025     # import torchvision.models as models
1026     # from torch.profiler import profile, record_function, ProfilerActivity
1027
1028     # with profile(activities=[ProfilerActivity.CPU,  ProfilerActivity.CUDA], profile_memory=True, record_shapes=True) as prof:
1029     # with record_function("model_inference"):
1030
1031     model.eval()
1032     for i in range(3):
1033         start_time = time.perf_counter()
1034         for k in range(10):
1035             model(BracketedSequence(x))
1036         duration = time.perf_counter() - start_time
1037         print(duration)
1038         sys.stdout.flush()
1039
1040     # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
1041     # print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
1042
1043     # print("##############################################################")
1044     # y2 = torch.randn_like(y1)
1045     # for s in range(x.size(1)):
1046     # z = model(BracketedSequence(x, s, 1))
1047     # y2[:, s : s + 1] = z.slice()
1048
1049     # print(f"error={((y1 - y2).norm() / (y1.norm() + y2.norm())).item()}")
1050
1051 ######################################################################