Update.
[mygptrnn.git] / mygpt.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # This is an implementation from scratch of a "GPT", that is a model
9 # composed of several causal self-attention blocks. It is equipped
10 # with a caching mechanism for keys and values to avoid a O(N^3) cost
11 # for auto-regression.
12
13 import math, warnings
14
15 import torch, einops
16
17 from torch import nn
18 from torch.nn import functional as F
19
20 import ffutils
21
22 # import memload
23
24 ######################################################################
25
26 # A BracketedSequence is a BxTx... tensor with a first and a nb time
27 # steps to compute.
28
29 # Modules able to process it expect that they will have to process a
30 # first bracket starting at t=0, followed by a succession of brackets
31 # that move forward in time, do not overlap, and cover the axis T with
32 # no holes.
33 #
34 # Although it is more general, for a classical prompt-conditioned
35 # auto-regressive process it will be a first bracket starting at 0 and
36 # of arbitrary length for the "prompt", followed by brackets of length
37 # 1 for the successive tokens.
38 #
39 # Modules able to process brackets may implement a cache that is
40 # resetted when the input bracket starts at t=0
41
42
43 class BracketedSequence:
44     def __init__(self, x, first=None, nb=None, init_cache=None):
45         self.x = x
46         assert (first is None and nb is None and init_cache is None) or (
47             first is not None and nb is not None and init_cache is not None
48         )
49
50         self.first = 0 if first is None else first
51         self.nb = x.size(1) if nb is None else nb
52         self.init_cache = True if init_cache is None else init_cache
53
54     def slice(self):
55         return self.x[:, self.first : self.first + self.nb]
56
57     def complete(self):
58         return self.first == 0 and self.nb == self.x.size(1)
59
60
61 ######################################################################
62
63
64 class CacheWrapper(nn.Module):
65     def __init__(self, *f):
66         super().__init__()
67         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
68
69     def forward(self, bs):
70         if bs.init_cache:
71             y = self.f(bs.slice())
72             self.cache_y = y.new(*((y.size(0), bs.x.size(1)) + y.size()[2:]))
73             self.cache_y[:, bs.first : bs.first + bs.nb] = y
74         else:
75             assert tuple(bs.x.size()[:2]) == tuple(self.cache_y.size()[:2])
76             assert bs.first + bs.nb <= self.cache_y.size(1)
77             self.cache_y[:, bs.first : bs.first + bs.nb] = self.f(bs.slice())
78
79         return BracketedSequence(self.cache_y, bs.first, bs.nb, bs.init_cache)
80
81
82 ##############################
83
84
85 class WithResidual(nn.Module):
86     def __init__(self, *f):
87         super().__init__()
88         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
89
90     def forward(self, bs):
91         return BracketedSequence(bs.x + self.f(bs).x, bs.first, bs.nb, bs.init_cache)
92
93
94 ##############################
95
96
97 class AddPositionalEncoding(nn.Module):
98     def __init__(self, len_max):
99         super().__init__()
100         self.len_max = len_max
101
102     # [Vaswani et al 2018] PE_{t,2i} = sin(t/(L^{2i/D})), PE_{t,2i+1} = cos(t/(L^{2i/D}))
103
104     def forward(self, bs):
105         if bs.init_cache:
106             t = torch.arange(bs.x.size(1), dtype=bs.x.dtype, device=bs.x.device)[
107                 :, None
108             ]
109             j = torch.arange(bs.x.size(2), dtype=bs.x.dtype, device=bs.x.device)[
110                 None, :
111             ]
112             k = j % 2
113             self.pe = torch.sin(
114                 t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
115             )
116             self.cache_y = bs.x.new(bs.x.size())
117
118         self.cache_y[:, bs.first : bs.first + bs.nb] = (
119             bs.slice() + self.pe[bs.first : bs.first + bs.nb]
120         )
121
122         return BracketedSequence(self.cache_y, bs.first, bs.nb, bs.init_cache)
123
124
125 import pscan
126
127
128 # X is /.../xTxD   A is /.../xT   Y_init is /.../xD
129
130
131 def pscan_dim(A, X, Y_init, dim=-2):
132     s = X.size()
133     a, T, b = s[:dim].numel(), s[dim], s[dim + 1 :].numel()
134
135     A = A.reshape(a, T, *s[dim + 1 : -1])
136     X = X.reshape(a, T, *s[dim + 1 : -1], -1)
137
138     if Y_init is None:
139         Y_init = X.new_zeros(a, *s[dim + 1 : -1], X.size(-1))
140     else:
141         Y_init = Y_init.reshape(a, *s[dim + 1 : -1], -1)
142
143     Y = pscan.pscan(A, X, Y_init).reshape(s)
144
145     return Y
146
147
148 def pscan_shape(A, X, Y_init):
149     s = X.size()
150     A = A.reshape(-1, s[-2])
151     X = X.reshape(-1, s[-2], s[-1])
152
153     if Y_init is None:
154         Y_init = X.new_zeros(X.size(0), s[-1])
155     else:
156         Y_init = Y_init.reshape(-1, s[-1])
157
158     Y = pscan.pscan(A, X, Y_init).reshape(s)
159
160     return Y
161
162
163 def nsum_shape(X, Y_init):
164     s = X.size()
165     X = X.reshape(-1, s[-2], s[-1])  # ntd
166
167     Y = 0 if Y_init is None else Y_init.reshape(-1, s[-1])
168     result = []
169
170     for k in range(X.size(1)):
171         Y = Y + X[:, k]
172         Y = Y / Y.norm(dim=-1, keepdim=True).clamp(min=1)
173         result.append(Y)
174
175     return torch.cat(result, dim=1).reshape(s)
176
177
178 ##############################
179
180
181 class DumbRec(nn.Module):
182     def __init__(
183         self,
184         dim_model,
185         dim_qk,
186         dim_v,
187         nb_heads,
188         nb_lines,
189         attention_dropout=0.0,
190         len_max=1e5,
191     ):
192         super().__init__()
193
194         def randw(*d):
195             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
196
197         self.nb_lines = nb_lines
198         self.attention_dropout = attention_dropout
199
200         self.k_star = randw(nb_lines, dim_qk)
201
202         self.w_qw = randw(nb_heads, dim_qk, dim_model)
203         self.w_qr = randw(nb_heads, dim_qk, dim_model)
204         # self.w_k = randw(nb_heads, dim_qk, dim_model)
205         self.w_v = randw(nb_heads, dim_v, dim_model)
206         self.w_o = randw(dim_v * nb_heads, dim_model)
207
208     def reset_inner_loss(self):
209         self.acc_attention = 0
210         self.acc_nb = 0
211
212     def get_inner_loss(self):
213         warnings.warn("l2 regularization", RuntimeWarning)
214         return (self.acc_attention / self.acc_nb).pow(2).sum()
215         # return torch.tensor([0], device=self.w_qw.device)
216
217     def forward(self, bs):
218         x_q, t0, t1 = bs.x, bs.first, bs.first + bs.nb
219
220         if bs.init_cache:
221             self.rec_v = x_q.new_zeros(
222                 x_q.size(0), self.nb_lines, x_q.size(1), self.w_v.size(1)
223             )
224             # self.rec_k = x_q.new_zeros(
225             # x_q.size(0), self.nb_lines, x_q.size(1), self.w_k.size(1)
226             # )
227             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
228
229         ######################################################################
230         # Prepare the keys
231
232         k_star = self.k_star[:, None, :].expand(-1, t1 - t0, -1)
233
234         warnings.warn("rotating key barrel", RuntimeWarning)
235         k_star = self.k_star[:, None, :].expand(-1, x_q.size(1), -1)
236         t_barrel = torch.arange(t0, t1, device=k_star.device)
237         t_barrel = t_barrel[None, :].expand(k_star.size(0), t1 - t0)
238         l_barrel = (
239             torch.arange(k_star.size(0), device=k_star.device)[:, None] + t_barrel
240         ) % k_star.size(0)
241         k_star = k_star[l_barrel, t_barrel]
242
243         ######################################################################
244         # Compute the recurrent state
245
246         qw = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_qw)
247
248         v = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_v)
249         # k = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_k)
250
251         aw = torch.einsum(
252             "nhtd,ltd->nhlt",
253             qw,
254             k_star,
255         ) / math.sqrt(self.w_qw.size(1))
256
257         aw = aw.softmax(dim=2)  # nhlt
258
259         if self.train:
260             self.acc_attention += aw.sum(dim=(0, 1, 3))
261             self.acc_nb += aw.size(0) * aw.size(1) * aw.size(3)
262
263         aw = F.dropout(aw, self.attention_dropout, self.training)
264
265         A = 1 - aw.sum(dim=1)  # nlt
266
267         V = torch.einsum("nhlt,nhtd->nltd", aw, v).contiguous()
268         # K = torch.einsum("nhlt,nhtd->nltd", aw, k).contiguous()
269
270         if t0 == 0:
271             V0 = None
272             # K0 = None
273         else:
274             V0 = self.rec_v[:, :, t0 - 1]
275             # K0 = self.rec_k[:, :, t0 - 1]
276
277         self.rec_v[:, :, t0:t1] = pscan_shape(A, V, V0)
278         # self.rec_k[:, :, t0:t1] = pscan_shape(A, K, K0)
279
280         ######################################################################
281         # compute the readout
282
283         qr = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_qr)
284
285         ar = torch.einsum(
286             "nhtd,ld->nhlt",
287             qr,
288             # self.rec_k[:, :, t0:t1],
289             self.k_star,
290         ) / math.sqrt(self.w_qr.size(1))
291
292         ar = ar.softmax(dim=2)  # nhlt
293
294         ar = F.dropout(ar, self.attention_dropout, self.training)
295
296         y = torch.einsum(
297             "nhlt,nltd->nthd",
298             ar,
299             self.rec_v[:, :, t0:t1],
300         ).flatten(2)
301
302         self.cache_y[:, t0:t1] = y @ self.w_o
303
304         return BracketedSequence(self.cache_y, t0, t1 - t0, bs.init_cache)
305
306
307 ##############################
308
309
310 class KVRec(nn.Module):
311     def __init__(
312         self,
313         dim_model,
314         dim_qk,
315         dim_v,
316         nb_heads,
317         nb_lines,
318         attention_dropout=0.0,
319         len_max=1e5,
320     ):
321         super().__init__()
322
323         def randw(*d):
324             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
325
326         self.nb_lines = nb_lines
327         self.attention_dropout = attention_dropout
328
329         self.k_star = randw(nb_lines, dim_qk)
330
331         self.w_qw = randw(nb_heads, dim_qk, dim_model)
332         self.w_qr = randw(nb_heads, dim_qk, dim_model)
333         self.w_k = randw(nb_heads, dim_qk, dim_model)
334         self.w_v = randw(nb_heads, dim_v, dim_model)
335         self.w_o = randw(dim_v * nb_heads, dim_model)
336
337     def reset_inner_loss(self):
338         self.acc_attention = 0
339         self.acc_nb = 0
340
341     def get_inner_loss(self):
342         warnings.warn("l2 regularization", RuntimeWarning)
343         return (self.acc_attention / self.acc_nb).pow(2).sum()
344         # return torch.tensor([0], device=self.w_qw.device)
345         # warnings.warn("side regularization", RuntimeWarning)
346         # return (
347         # (0.5 / self.nb_lines - self.acc_attention / self.acc_nb).clamp(min=0).sum()
348         # )
349         # return torch.tensor([0], device=self.w_qw.device)
350
351     def forward(self, bs):
352         x_q, t0, t1 = bs.x, bs.first, bs.first + bs.nb
353
354         if bs.init_cache:
355             self.rec_v = x_q.new_zeros(
356                 x_q.size(0), self.nb_lines, x_q.size(1), self.w_v.size(1)
357             )
358             self.rec_k = x_q.new_zeros(
359                 x_q.size(0), self.nb_lines, x_q.size(1), self.w_k.size(1)
360             )
361             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
362
363         ######################################################################
364         # Prepare the keys
365
366         k_star = self.k_star[:, None, :].expand(-1, t1 - t0, -1)
367
368         warnings.warn("rotating key barrel", RuntimeWarning)
369         k_star = self.k_star[:, None, :].expand(-1, x_q.size(1), -1)
370         t_barrel = torch.arange(t0, t1, device=k_star.device)
371         t_barrel = t_barrel[None, :].expand(k_star.size(0), t1 - t0)
372         l_barrel = (
373             torch.arange(k_star.size(0), device=k_star.device)[:, None] + t_barrel
374         ) % k_star.size(0)
375         k_star = k_star[l_barrel, t_barrel]
376
377         ######################################################################
378         # Compute the recurrent state
379
380         qw = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_qw)
381
382         v = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_v)
383         k = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_k)
384
385         aw = torch.einsum(
386             "nhtd,ltd->nhlt",
387             qw,
388             k_star,
389         ) / math.sqrt(self.w_qw.size(1))
390
391         aw = aw.softmax(dim=2)  # nhlt
392
393         if self.train:
394             # We want all the memory lines to be used similarly
395             self.acc_attention += aw.sum(dim=(0, 1, 3))  # Sum accross NxHx_xT
396             self.acc_nb += aw.size(0) * aw.size(1) * aw.size(3)
397
398         aw = F.dropout(aw, self.attention_dropout, self.training)
399
400         A = 1 - aw.sum(dim=1)  # nlt
401
402         V = torch.einsum("nhlt,nhtd->nltd", aw, v).contiguous()
403         K = torch.einsum("nhlt,nhtd->nltd", aw, k).contiguous()
404
405         if t0 == 0:
406             V0 = None
407             K0 = None
408         else:
409             V0 = self.rec_v[:, :, t0 - 1]
410             K0 = self.rec_k[:, :, t0 - 1]
411
412         self.rec_v[:, :, t0:t1] = pscan_shape(A, V, V0)
413         self.rec_k[:, :, t0:t1] = pscan_shape(A, K, K0)
414
415         ######################################################################
416         # compute the readout
417
418         qr = torch.einsum("ntc,hdc->nhtd", x_q[:, t0:t1], self.w_qr)
419
420         ar = torch.einsum(
421             "nhtd,nltd->nhlt",
422             qr,
423             self.rec_k[:, :, t0:t1],
424         ) / math.sqrt(self.w_qr.size(1))
425
426         ar = ar.softmax(dim=2)  # nhlt
427
428         ar = F.dropout(ar, self.attention_dropout, self.training)
429
430         y = torch.einsum(
431             "nhlt,nltd->nthd",
432             ar,
433             self.rec_v[:, :, t0:t1],
434         ).flatten(2)
435
436         self.cache_y[:, t0:t1] = y @ self.w_o
437
438         return BracketedSequence(self.cache_y, t0, t1 - t0, bs.init_cache)
439
440
441 ##############################
442
443
444 # Returns a tensor with an additional index at rank win_dim, that move
445 # along the same dimension as dim, on a domain {0...win_size-1}, and
446 # dim is restricted on a domain reduced by win_size-1 values.
447
448
449 def moving_window(x, dim, win_dim, win_size):
450     size, stride = x.size(), x.stride()
451     size = size[:dim] + (size[dim] - win_size + 1,) + size[dim + 1 :]
452     size = size[:win_dim] + (win_size,) + size[win_dim:]
453     stride = stride[:win_dim] + (stride[dim],) + stride[win_dim:]
454
455     return x.as_strided(size=size, stride=stride)
456
457
458 ##############################
459
460
461 class Caterpillar(nn.Module):
462     def __init__(
463         self,
464         dim_model,
465         dim_qk,
466         dim_v,
467         nb_heads,
468         caterpillar_length,
469         caterpillar_height,
470         attention_dropout=0.0,
471         len_max=1e5,
472     ):
473         super().__init__()
474
475         warnings.warn("Caterpillar", RuntimeWarning)
476
477         def randw(*d):
478             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
479
480         self.caterpillar_length = caterpillar_length
481         self.caterpillar_height = caterpillar_height
482         self.attention_dropout = attention_dropout
483
484         self.w_G = randw(nb_heads, caterpillar_height, dim_model)
485         self.b_G = nn.Parameter(
486             torch.full(
487                 (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1)
488             )
489         )
490
491         self.w_K = randw(nb_heads, dim_qk, dim_model)
492         self.w_V = randw(nb_heads, dim_v, dim_model)
493         self.w_Q = randw(nb_heads, dim_qk, dim_model)
494         self.w_O = randw(dim_v * nb_heads, dim_model)
495
496         self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk)
497         self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v)
498
499     def reset_inner_loss(self):
500         self.acc_attention = 0
501         self.acc_nb = 0
502
503     def get_inner_loss(self):
504         # warnings.warn("l2 regularization", RuntimeWarning)
505         # return (self.acc_attention / self.acc_nb).pow(2).sum()
506         return torch.tensor([0], device=self.w_Q.device)
507
508     def forward(self, bs):
509         # Dimensions to make the source a bit clearer, that's needed
510
511         X, t0, t1 = bs.slice(), bs.first, bs.first + bs.nb
512
513         N = bs.x.size(0)
514         T = bs.x.size(1)
515         DV = self.w_V.size(1)
516         DK = self.w_K.size(1)
517         Dout = self.w_O.size(1)
518         CH = self.caterpillar_height
519         CL = self.caterpillar_length
520
521         assert (
522             t0 >= CL and (t1 - t0) % CL == 0
523         ), f"bs.first should be greater than caterpillar_length, and bs.nb should be a multiple of caterpillar_length"
524
525         if bs.init_cache:
526             self.rec_V = X.new_zeros(N, CH, T, DV)
527             self.rec_K = X.new_zeros(N, CH, T, DK)
528             # We start the recurrent sequences with optimizable
529             # initial values. No idea if it helps.
530             self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :]
531             self.rec_K[:, :, t0 - CL : t0] = self.init_K_rec[None, :, :, :]
532
533             self.cache_Y = X.new_zeros(N, T, Dout)
534
535         ######################################################################
536         # Compute the recurrent state
537
538         # This is the Gating sequence that modulates the storing of
539         # the new key and value in the CH pairs of the current
540         # stack. The CH gating values are independent, which means
541         # that the current K/V could be stored in all the pairs of the
542         # recurrent state, or not at all.
543
544         G = (
545             torch.einsum("ntc,hec->nhet", X, self.w_G) + self.b_G[None, :, :, None]
546         ).sigmoid()
547
548         V = torch.einsum("ntc,hdc->nhtd", X, self.w_V)
549         K = torch.einsum("ntc,hdc->nhtd", X, self.w_K)
550
551         # We prepare the arguments for the parallel scan
552
553         A = 1 - G.sum(1)
554         gated_V = torch.einsum("nhet,nhtd->netd", G, V)
555         gated_K = torch.einsum("nhet,nhtd->netd", G, K)
556
557         init_rec_V = self.rec_V[:, :, t0 - CL : t0]
558         init_rec_K = self.rec_K[:, :, t0 - CL : t0]
559
560         # Here there is a trick: Since the stack at time t is computed
561         # by updating that at time t-L, the parallel scan operates
562         # with a period of L. To do so we split the time indexing in
563         # two axes, the second of size CL, and run the parallel scan
564         # using the other alone as the sequence index.
565
566         A = A.unflatten(2, (-1, CL))
567         gated_V = gated_V.unflatten(2, (-1, CL))
568         gated_K = gated_K.unflatten(2, (-1, CL))
569
570         next_V = pscan_dim(A, gated_V, init_rec_V, dim=2)
571         next_K = pscan_dim(A, gated_K, init_rec_K, dim=2)
572
573         # Put back the sequence index
574
575         self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3)
576         self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3)
577
578         ######################################################################
579         # compute the readout
580
581         Q = torch.einsum("ntc,hdc->nhtd", X, self.w_Q)
582
583         # We build tensors NxHxTxFxL where N is the sample index, H
584         # the head, T the time, F the row in the caterpillar, and L
585         # the column in the caterpillar
586
587         windowed_V = moving_window(
588             self.rec_V[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
589         )
590
591         windowed_K = moving_window(
592             self.rec_K[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
593         )
594
595         # We have an attention score for each of the CHxCL values
596
597         ar = torch.einsum(
598             "nhtd,nftld->nhtfl",
599             Q,
600             windowed_K,
601         ) / math.sqrt(DK)
602
603         # softmax can operate only on one dimension, hence the
604         # flattening
605
606         ar = ar.flatten(3).softmax(dim=3).view(ar.size())
607
608         ar = F.dropout(ar, self.attention_dropout, self.training)
609
610         # Compute the output for each head, flatten to concatenate
611
612         Y = torch.einsum(
613             "nhtfl,nftld->nthd",
614             ar,
615             windowed_V,
616         ).flatten(2)
617
618         # Compute the final output
619
620         self.cache_Y[:, t0:t1] = Y @ self.w_O
621
622         return BracketedSequence(self.cache_Y, t0, t1 - t0, bs.init_cache)
623
624
625 ##############################
626
627
628 class QKVAttention(nn.Module):
629     def __init__(
630         self,
631         dim_model,
632         dim_qk,
633         dim_v,
634         nb_heads=1,
635         causal=False,
636         attention_dropout=0.0,
637     ):
638         super().__init__()
639
640         def randw(*d):
641             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
642
643         self.causal = causal
644         self.attention_dropout = attention_dropout
645         self.record_attention = False
646
647         self.w_q = randw(nb_heads, dim_qk, dim_model)
648         self.w_k = randw(nb_heads, dim_qk, dim_model)
649         self.w_v = randw(nb_heads, dim_v, dim_model)
650         self.w_o = randw(dim_v * nb_heads, dim_model)
651
652     def forward(self, bs):
653         x_q = bs.x
654
655         assert (
656             self.causal or bs.complete()
657         ), "Partial evaluation is only possible for causal models"
658
659         if bs.init_cache:
660             self.cache_k = x_q.new_zeros(
661                 x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
662             )
663             self.cache_v = x_q.new_zeros(
664                 x_q.size(0), self.w_v.size(0), x_q.size(1), self.w_v.size(1)
665             )
666             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
667
668         q = torch.einsum("ntc,hdc->nhtd", x_q[:, bs.first : bs.first + bs.nb], self.w_q)
669
670         self.cache_k[:, :, bs.first : bs.first + bs.nb] = torch.einsum(
671             "ntc,hdc->nhtd", x_q[:, bs.first : bs.first + bs.nb], self.w_k
672         )
673         self.cache_v[:, :, bs.first : bs.first + bs.nb] = torch.einsum(
674             "ntc,hdc->nhtd", x_q[:, bs.first : bs.first + bs.nb], self.w_v
675         )
676
677         a = torch.einsum(
678             "nhtd,nhsd->nhts", q, self.cache_k[:, :, : bs.first + bs.nb]
679         ) / math.sqrt(self.w_q.size(1))
680
681         if self.causal:
682             if bs.init_cache:
683                 self.cache_attzero = (
684                     torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
685                     < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
686                 )
687             a = a.masked_fill(
688                 self.cache_attzero[
689                     :, :, bs.first : bs.first + bs.nb, : bs.first + bs.nb
690                 ],
691                 float("-inf"),
692             )
693
694         a = a.softmax(dim=3)
695
696         if self.record_attention:
697             self.a = a
698
699         a = F.dropout(a, self.attention_dropout, self.training)
700
701         y = torch.einsum(
702             "nhts,nhsd->nthd", a, self.cache_v[:, :, : bs.first + bs.nb]
703         ).flatten(2)
704
705         self.cache_y[:, bs.first : bs.first + bs.nb] = y @ self.w_o
706
707         return BracketedSequence(self.cache_y, bs.first, bs.nb, bs.init_cache)
708
709
710 ##############################
711
712
713 class MyGPT(nn.Module):
714     def __init__(
715         self,
716         vocabulary_size,
717         dim_model,
718         dim_keys,
719         dim_hidden,
720         nb_heads,
721         nb_blocks,
722         nb_lines=None,
723         caterpillar_height=None,
724         dim_rec_v=-1,
725         causal=False,
726         dropout=0.0,
727         len_max=1e5,
728         attention_layer="kvrec",
729     ):
730         super().__init__()
731
732         assert attention_layer in {"mha", "dumbrec", "kvrec", "caterpillar"}
733
734         if attention_layer == "caterpillar":
735             assert nb_lines % caterpillar_height == 0
736             self.caterpillar_length = nb_lines // caterpillar_height
737             self.caterpillar_height = caterpillar_height
738         else:
739             self.caterpillar_length = -1
740             self.caterpillar_height = -1
741
742         assert dim_model % nb_heads == 0
743
744         self.embedding = nn.Sequential(
745             CacheWrapper(nn.Embedding(vocabulary_size, dim_model), nn.Dropout(dropout)),
746             AddPositionalEncoding(len_max),
747         )
748
749         trunk_blocks = []
750
751         def attlayer():
752             if attention_layer == "mha":
753                 return QKVAttention(
754                     dim_model=dim_model,
755                     dim_qk=dim_keys,
756                     dim_v=dim_model // nb_heads,
757                     nb_heads=nb_heads,
758                     causal=causal,
759                     attention_dropout=dropout,
760                 )
761             elif attention_layer == "dumbrec":
762                 return DumbRec(
763                     dim_model=dim_model,
764                     dim_qk=dim_keys,
765                     dim_v=dim_rec_v,
766                     nb_heads=nb_heads,
767                     nb_lines=nb_lines,
768                     attention_dropout=dropout,
769                 )
770             elif attention_layer == "kvrec":
771                 return KVRec(
772                     dim_model=dim_model,
773                     dim_qk=dim_keys,
774                     dim_v=dim_rec_v,
775                     nb_heads=nb_heads,
776                     nb_lines=nb_lines,
777                     attention_dropout=dropout,
778                 )
779             elif attention_layer == "caterpillar":
780                 return Caterpillar(
781                     dim_model=dim_model,
782                     dim_qk=dim_keys,
783                     dim_v=dim_rec_v,
784                     nb_heads=nb_heads,
785                     caterpillar_length=self.caterpillar_length,
786                     caterpillar_height=self.caterpillar_height,
787                     attention_dropout=dropout,
788                 )
789             else:
790                 raise ValueError(f"Unknown attention type {attention_layer}.")
791
792         for b in range(nb_blocks):
793             trunk_blocks += [
794                 WithResidual(
795                     CacheWrapper(nn.LayerNorm((dim_model,))),
796                     attlayer(),
797                 ),
798                 WithResidual(
799                     CacheWrapper(
800                         nn.LayerNorm((dim_model,)),
801                         nn.Linear(in_features=dim_model, out_features=dim_hidden),
802                         nn.ReLU(),
803                         nn.Linear(in_features=dim_hidden, out_features=dim_model),
804                         nn.Dropout(dropout),
805                     ),
806                 ),
807             ]
808
809         self.trunk = nn.Sequential(*trunk_blocks)
810
811         self.readout = CacheWrapper(
812             nn.Linear(in_features=dim_model, out_features=vocabulary_size)
813         )
814
815         with torch.no_grad():
816             for m in self.modules():
817                 if isinstance(m, nn.Embedding):
818                     m.weight.normal_(mean=0, std=2e-2)
819                 elif isinstance(m, nn.LayerNorm):
820                     m.bias.zero_()
821                     m.weight.fill_(1.0)
822
823         self.reset_inner_loss()
824
825     def forward(self, bs):
826         bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb, bs.init_cache)
827
828         # To make the code simpler in the Caterpillar layer, we pad
829         # here. It's unclear if/how much it hurts computationaly by
830         # increasing the sequence length for the other layers
831
832         if self.caterpillar_length > 0:
833             original_nb = bs.nb
834             if bs.nb % self.caterpillar_length > 0:
835                 bs.nb += self.caterpillar_length - bs.nb % self.caterpillar_length
836
837             bs = BracketedSequence(
838                 F.pad(bs.x, (self.caterpillar_length, self.caterpillar_length)),
839                 bs.first + self.caterpillar_length,
840                 bs.nb,
841                 bs.init_cache,
842             )
843
844         bs = self.embedding(bs)
845         bs = self.trunk(bs)
846         bs = self.readout(bs)
847
848         if self.caterpillar_length > 0:
849             bs = BracketedSequence(
850                 F.pad(bs.x, (0, 0, -self.caterpillar_length, -self.caterpillar_length)),
851                 bs.first - self.caterpillar_length,
852                 original_nb,
853                 bs.init_cache,
854             )
855
856         return bs
857
858     # ar_mask is a tensor with 0s and 1s, of same shape as input, with
859     # 1s where tokens should be generated. The others are kept
860     # unchanged.
861
862     def masked_inplace_autoregression(
863         self,
864         input_src,
865         ar_mask_src,
866         forbidden_tokens=None,
867         deterministic_synthesis=False,
868     ):
869         input = input_src.to(self.readout.f.weight.device)
870         ar_mask = ar_mask_src.to(self.readout.f.weight.device)
871         to_generate = (ar_mask.sum(0) > 0).nonzero()
872         if to_generate.min() > 0:
873             self(
874                 BracketedSequence(input, 0, to_generate.min(), True)
875             )  # Needed to initialize the model's cache
876         for s in range(to_generate.min(), to_generate.max() + 1):
877             output = self(BracketedSequence(input, s, 1, s == 0)).x
878             logits = output[:, s]
879             if forbidden_tokens is not None:
880                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
881             if deterministic_synthesis:
882                 t_next = logits.argmax(1)
883             else:
884                 dist = torch.distributions.categorical.Categorical(logits=logits)
885                 t_next = dist.sample()
886             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
887
888         input_src.copy_(input)
889
890     def reset_inner_loss(self):
891         for m in self.modules():
892             if m is not self and hasattr(m, "reset_inner_loss"):
893                 m.reset_inner_loss()
894
895     def get_inner_loss(self):
896         l = torch.tensor([0.0], device=self.readout.f.weight.device)
897         for m in self.modules():
898             if m is not self and hasattr(m, "get_inner_loss"):
899                 l += m.get_inner_loss()
900         return l
901
902     def record_attention(self, v=True):
903         for m in self.modules():
904             if isinstance(m, QKVAttention):
905                 m.record_attention = v
906
907     def retrieve_attention(self):
908         a = []
909         for m in self.modules():
910             if isinstance(m, QKVAttention):
911                 a.append(m.a)
912         return a
913
914
915 ######################################################################
916
917 if __name__ == "__main__":
918     print("Basic check.")
919
920     m = Caterpillar(
921         dim_model=4,
922         dim_qk=3,
923         dim_v=7,
924         nb_heads=1,
925         caterpillar_length=7,
926         caterpillar_height=3,
927         attention_dropout=0.0,
928     )
929
930     m.reset_inner_loss()
931     x = torch.randn(1, 21 + 2 * 7, 4)
932     y1 = m(BracketedSequence(x, first=7, nb=21, init_cache=True)).x[:, 7:28]
933     y2 = m(BracketedSequence(x, first=7, nb=21, init_cache=True)).x[:, 7:28]
934     y3a = m(BracketedSequence(x, first=7, nb=14, init_cache=True)).x[:, 7:21]
935     y3b = m(BracketedSequence(x, first=21, nb=7, init_cache=False)).x[:, 21:28]
936     print((y1 - y2).abs().max())
937     print((y1 - torch.cat([y3a, y3b], dim=1)).abs().max())
938     exit(0)
939
940     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
941
942     vocabulary_size = 128
943     x = torch.randint(vocabulary_size, (6, 1024))
944
945     model = MyGPT(
946         vocabulary_size=vocabulary_size,
947         dim_model=512,
948         dim_keys=64,
949         dim_hidden=2048,
950         nb_heads=8,
951         nb_lines=128,
952         nb_blocks=12,
953         dropout=0.1,
954         causal=True,
955     )
956
957     x = x.to(device)
958     model.to(device)
959
960     import time, sys
961
962     # import torchvision.models as models
963     # from torch.profiler import profile, record_function, ProfilerActivity
964
965     # with profile(activities=[ProfilerActivity.CPU,  ProfilerActivity.CUDA], profile_memory=True, record_shapes=True) as prof:
966     # with record_function("model_inference"):
967
968     model.eval()
969     for i in range(3):
970         start_time = time.perf_counter()
971         for k in range(10):
972             model(BracketedSequence(x))
973         duration = time.perf_counter() - start_time
974         print(duration)
975         sys.stdout.flush()
976
977     # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
978     # print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
979
980     # print("##############################################################")
981     # y2 = torch.randn_like(y1)
982     # for s in range(x.size(1)):
983     # z = model(BracketedSequence(x, s, 1))
984     # y2[:, s : s + 1] = z.slice()
985
986     # print(f"error={((y1 - y2).norm() / (y1.norm() + y2.norm())).item()}")
987
988 ######################################################################