3 * dyncnn is a deep-learning algorithm for the prediction of
4 * interacting object dynamics
6 * Copyright (c) 2016 Idiap Research Institute, http://www.idiap.ch/
7 * Written by Francois Fleuret <francois.fleuret@idiap.ch>
9 * This file is part of dyncnn.
11 * dyncnn is free software: you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License version 3 as
13 * published by the Free Software Foundation.
15 * dyncnn is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with dyncnn. If not, see <http://www.gnu.org/licenses/>.
40 #include "canvas_cairo.h"
42 //////////////////////////////////////////////////////////////////////
44 void draw_universe_on_canvas(CanvasCairo *canvas, scalar_t scaling,
46 canvas->set_line_width(1.0 / scaling);
47 universe->draw(canvas);
50 void draw_grabbing_point_on_canvas(CanvasCairo *canvas, scalar_t scaling,
51 scalar_t xg, scalar_t yg,
52 scalar_t r, scalar_t g, scalar_t b) {
53 scalar_t radius = 1/scaling;
55 scalar_t xp[n], yp[n];
56 for(int k = 0; k < n; k++) {
57 scalar_t alpha = 2 * M_PI * scalar_t(k) / scalar_t(n);
58 xp[k] = xg + radius * cos(alpha);
59 yp[k] = yg + radius * sin(alpha);
61 canvas->set_drawing_color(r, g, b);
62 canvas->set_line_width(2.0);
63 canvas->draw_polygon(1, n, xp, yp);
66 //////////////////////////////////////////////////////////////////////
68 extern "C" void fl_generate_sequences(int nb_sequences,
69 int nb_images_per_sequence,
70 int width, int height,
71 unsigned char *output) {
73 const scalar_t world_width = width * 8;
74 const scalar_t world_height = height * 8;
75 const scalar_t scaling = 0.125;
77 const scalar_t dt = 0.1;
78 const int nb_iterations_per_steps = 5;
80 //////////////////////////////////////////////////////////////////////
82 // We will generate images { 0, every_nth, 2 * every_nth, ..., k * every_nth < nb_simulated_frames }
84 // The framerate every_nth may be set to smaller value to generate
85 // nice materials for presentations or papers.
88 int nb_simulated_frames = 1 + (nb_images_per_sequence - 1) * every_nth;
90 int random_shape_size = 0;
94 for(int n = 0; n < nb_sequences; n++) {
97 Polygon *grabbed_polygon;
99 universe = new Universe(nb_shapes, world_width, world_height);
101 const int nb_saved_frames = (nb_simulated_frames + every_nth - 1) / every_nth;
102 if(nb_saved_frames != nb_images_per_sequence) {
103 cerr << "It makes no sense." << endl;
107 CanvasCairo *canvases[nb_saved_frames * 2];
109 for(int s = 0; s < 2 * nb_saved_frames; s++) {
110 canvases[s] = new CanvasCairo(scaling, universe->width(), universe->height());
113 scalar_t grab_start_x, grab_start_y;
116 grab_start_x = world_width * (0.1 + 0.8 * drand48());
117 grab_start_y = world_height * (0.1 + 0.8 * drand48());
119 grab_start_x = world_width * 0.5;
120 grab_start_y = world_height * 0.75;
126 const int nb_attempts_max = 100;
129 for(int u = 0; u < nb_shapes; u++) {
136 if(random_shape_size) {
137 shape_size = 40 + 80 * drand48();
143 scalar_t x[] = { - shape_size * 0.4, + shape_size * 0.4,
144 + shape_size * 0.4, - shape_size * 0.4 };
146 scalar_t y[] = { - shape_size * 0.6, - shape_size * 0.6,
147 + shape_size * 0.6, + shape_size * 0.6 };
149 scalar_t delta = shape_size / sqrt(2.0);
151 scalar_t object_center_x = delta + (world_width - 2 * delta) * drand48();
152 scalar_t object_center_y = delta + (world_height - 2 * delta) * drand48();
155 pol = new Polygon(0.5, 1.0, 1.0, 1.0, x, y, sizeof(x)/sizeof(scalar_t));
156 pol->set_position(object_center_x, object_center_y, M_PI * 2 * drand48());
157 pol->set_speed(0, 0, 0);
159 universe->initialize_polygon(pol);
162 } while(nb_attempts < nb_attempts_max && universe->collide(pol));
164 if(nb_attempts == nb_attempts_max) {
170 universe->add_polygon(pol);
174 grabbed_polygon = universe->pick_polygon(grab_start_x, grab_start_y);
175 } while(!grabbed_polygon);
177 if(skip < 0 || n >= skip) {
179 scalar_t grab_relative_x = grabbed_polygon->relative_x(grab_start_x, grab_start_y);
180 scalar_t grab_relative_y = grabbed_polygon->relative_y(grab_start_x, grab_start_y);
182 for(int s = 0; s < nb_simulated_frames; s++) {
183 if(s % every_nth == 0) {
184 int t = s / every_nth;
185 // scalar_t xf = grabbed_polygon->absolute_x(grab_relative_x, grab_relative_y);
186 // scalar_t yf = grabbed_polygon->absolute_y(grab_relative_x, grab_relative_y);
188 // canvases[2 * t + 0]->clear();
189 // draw_grabbing_point_on_canvas(canvases[2 * t + 0], scaling,
190 // xf, yf, 0.0, 0.0, 0.0);
191 // canvases[2 * t + 1]->clear();
192 // draw_universe_on_canvas(canvases[2 * t + 1], scaling, universe);
194 canvases[t]->clear();
195 draw_universe_on_canvas(canvases[t], scaling, universe);
197 // if(show_grabbing_point) {
198 // draw_grabbing_point_on_canvas(canvases[2 * t + 1], scaling,
199 // xf, yf, 1.0, 0.0, 0.0);
203 if(s < nb_simulated_frames - 1) {
204 // Run the simulation
205 for(int i = 0; i < nb_iterations_per_steps; i++) {
206 scalar_t xf = grabbed_polygon->absolute_x(grab_relative_x, grab_relative_y);
207 scalar_t yf = grabbed_polygon->absolute_y(grab_relative_x, grab_relative_y);
208 grabbed_polygon->apply_force(dt, xf, yf, 0.0, -1.0);
209 universe->update(dt, 1.0 / scaling);
214 for(int t = 0; t < nb_images_per_sequence; t++) {
215 unsigned char *src = canvases[t]->_data;
216 unsigned char *dst = output + (n * nb_images_per_sequence + t) * width * height * 3;
217 for(int d = 0; d < 3; d++) {
218 for(int y = 0; y < height; y++) {
219 for(int x = 0; x < width; x++) {
220 dst[x + width * (y + height * d)] = src[d + 4 * (x + width * y)];
227 for(int t = 0; t < 2 * nb_saved_frames; t++) {