###################################################################### 2024 Jan 07 21:37:48 (from mygpt.py) # This is one order of magnitude more complicated than I expected, not # elegant, slow, hopefully not buggy def flash_back_time_src(N, H, t0, t1, CL, CH, proba, device): # starting flash backs fb_start = (torch.rand(N, CH, t1 - t0, device=device) <= proba).long() fb_start[:, :, -CL:] = 0 fb_start[:, :, :CL] = 0 # Remove series longer than CL fb_body = fb_start.clone() fb_body[:, :, CL + 1 :] -= fb_start[:, :, : -(CL + 1)] fb_body = fb_body.cumsum(dim=2) fb_start = fb_start * (fb_body == 1) # Set a origin source time (starting time of the chunck to copy # here) We set it as the current time minus a multiple of CL to be # consistent with the "rolling" caterpillar t = torch.arange(fb_start.size(2), device=fb_start.device)[None, None, :] src_time = fb_start * ( t - CL * ( 1 + ( torch.rand(fb_start.size(), device=fb_start.device) * (t // CL - 1) ).long() ) ) src_time[:, :, CL:] -= src_time.clone()[:, :, :-CL] src_time = src_time.cumsum(dim=2) src_head = fb_start * torch.randint(H, fb_start.size(), device=fb_start.device) src_head[:, :, CL:] -= src_head.clone()[:, :, :-CL] src_head = src_head.cumsum(dim=2) # combine src_delta = fb_start.clone() src_delta[:, :, CL:] -= fb_start[:, :, :-CL] src_delta = src_delta.cumsum(dim=2) src_delta[:, :, CL:] -= CL * fb_start[:, :, :-CL] src_time += src_delta.cumsum(dim=2) - 1 return src_time, src_head def insert_flash_back(rec_V, V, rec_K, K, t0, t1, CL, proba): N, H, CH = V.size(0), V.size(1), rec_V.size(1) fbt, fbh = flash_back_time_src(N, H, t0, t1, CL, CH, proba, rec_V.device) fbt_V = fbt[:, :, :, None] fbh_V = fbh[:, :, :, None] t = fbt_V.clamp(min=0) n = torch.arange(V.size(0), device=V.device)[:, None, None, None] d = torch.arange(V.size(3), device=V.device)[None, None, None, :] q = V[:, :, t0:t1][n, fbh_V, t, d] rec_V[:, :, t0:t1] = q * (fbt_V >= 0) + rec_V[:, :, t0:t1] * (fbt_V < 0) fbt_K = fbt[:, :, :, None] fbh_K = fbh[:, :, :, None] t = fbt_K.clamp(min=0) n = torch.arange(K.size(0), device=K.device)[:, None, None, None] d = torch.arange(K.size(3), device=K.device)[None, None, None, :] q = K[:, :, t0:t1][n, fbh_K, t, d] rec_K[:, :, t0:t1] = q * (fbt_K >= 0) + rec_K[:, :, t0:t1] * (fbt_K < 0) ######################################################################