Update.
[mygptrnn.git] / mygpt.py
index 676b921..633ad64 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -476,8 +476,10 @@ class Caterpillar(nn.Module):
 
         warnings.warn("Caterpillar", RuntimeWarning)
 
-        def randw(*d):
-            return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
+        def randw(*d, amplitude=None):
+            if amplitude is None:
+                amplitude = 1 / math.sqrt(d[-1])
+            return nn.Parameter(amplitude * torch.randn(*d))
 
         self.caterpillar_length = caterpillar_length
         self.caterpillar_height = caterpillar_height
@@ -497,8 +499,16 @@ class Caterpillar(nn.Module):
         self.w_Q = randw(nb_heads, dim_qk, dim_model)
         self.w_O = randw(dim_v * nb_heads, dim_model)
 
-        self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk)
-        self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v)
+        self.init_K_rec = randw(
+            caterpillar_height,
+            caterpillar_length,
+            dim_qk,
+        )
+        self.init_V_rec = randw(
+            caterpillar_height,
+            caterpillar_length,
+            dim_v,
+        )
 
     def reset_inner_loss(self):
         self.acc_attention = 0
@@ -520,22 +530,22 @@ class Caterpillar(nn.Module):
         DV = self.w_V.size(1)
         DK = self.w_K.size(1)
         DM = self.w_O.size(1)
-        CH = self.caterpillar_height
-        CL = self.caterpillar_length
+        R = self.caterpillar_height
+        L = self.caterpillar_length
 
         assert (
-            t0 >= CL and (t1 - t0) % CL == 0
+            t0 >= L and (t1 - t0) % L == 0
         ), f"bs.first should be greater than caterpillar_length, and bs.nb should be a multiple of caterpillar_length"
 
         # We cache values to deal efficiently with auto-regression
 
         if bs.init_cache:
-            self.rec_V = X.new_zeros(N, CH, T, DV)
-            self.rec_K = X.new_zeros(N, CH, T, DK)
+            self.rec_V = X.new_zeros(N, R, T, DV)
+            self.rec_K = X.new_zeros(N, R, T, DK)
             # We start the recurrent sequences with optimizable
             # initial values. No idea if it helps.
-            self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :]
-            self.rec_K[:, :, t0 - CL : t0] = self.init_K_rec[None, :, :, :]
+            self.rec_V[:, :, t0 - L : t0] = self.init_V_rec[None, :, :, :]
+            self.rec_K[:, :, t0 - L : t0] = self.init_K_rec[None, :, :, :]
 
             self.cache_Y = X.new_zeros(N, T, DM)
 
@@ -546,52 +556,102 @@ class Caterpillar(nn.Module):
         # Compute the recurrent state
 
         # This is the Gating sequence that modulates the storing of
-        # the new key and value in the CH pairs of the current
-        # stack. There are CH independent gating values, which means
+        # the new key and value in the R pairs of the current
+        # stack. There are R independent gating values, which means
         # that the current K/V may be stored in multiple pairs of the
         # recurrent state, or not at all.
 
         G = (
-            torch.einsum("ntc,hec->nhet", X, self.w_G) + self.b_G[None, :, :, None]
+            torch.einsum("ntc,hrc->nhrt", X, self.w_G) + self.b_G[None, :, :, None]
         ).sigmoid()
 
-        # Clip the gating to avoid values greater than 1 when several
-        # heads hit the same row
+        ######################################################################
+        # Roll the gating indexes
 
-        G = G / G.sum(1, keepdim=True).clamp(min=1)
+        warnings.warn("rotating barrel", RuntimeWarning)
 
-        # We prepare the arguments for the parallel scan
+        # print(f"SANITY2 {N=} {H=} {R=} {t0=} {t1=} {G.size()=}")
 
-        A = 1 - G.sum(1)
-        gated_V = torch.einsum("nhet,nhtd->netd", G, V)
-        gated_K = torch.einsum("nhet,nhtd->netd", G, K)
+        n_barrel = torch.arange(N, device=G.device)[:, None, None, None]
+        h_barrel = torch.arange(H, device=G.device)[None, :, None, None]
+        r_barrel = torch.arange(R, device=G.device)[None, None, :, None]
+        t_barrel = torch.arange(t1 - t0, device=G.device)[None, None, None, :]
+        r_barrel = (r_barrel + (t_barrel + t0) // L) % R
 
-        # We start from cached values, which matters in inference
+        # GG = G.gather(dim=2,index=r_barrel)
+        G = G[n_barrel, h_barrel, r_barrel, t_barrel]
 
-        init_rec_V = self.rec_V[:, :, t0 - CL : t0]
-        init_rec_K = self.rec_K[:, :, t0 - CL : t0]
+        # print("SANITY", (GG-G).abs())
+        # exit(0)
 
         ######################################################################
+        # The "flashbacks"
 
         if self.training and self.proba_gate_dropout > 0.0:
-            # This is a better implementation of "flashbacks".  A is
-            # NxExT where e is the caterpillar's row.
+            # This is a better implementation of "flashbacks".
+
+            # G is NxHxExT where e is the caterpillar's row.
 
             warnings.warn("gate dropout", RuntimeWarning)
             epsilon = 0.5
 
+            dropout_head = (
+                (torch.rand(N, H, 1, t1 - t0, device=G.device).sort(dim=3).indices == 0)
+                .expand_as(G)
+                .float()
+            )
+
+            dropout_tail = dropout_head.cumsum(dim=3) - dropout_head
+
+            dropout_active = (
+                torch.rand(N, 1, 1, 1, device=G.device) < self.proba_gate_dropout
+            ).long()
+
+            dropout_head *= dropout_active
+            dropout_tail *= dropout_active
+
+            G = (
+                G
+                + dropout_head * (1 - epsilon - G.detach())
+                - dropout_tail * G.detach()
+            )
+
+        ######################################################################
+
+        # We prepare the arguments for the parallel scan
+
+        # Clip the gating to avoid values greater than 1 when several
+        # heads hit the same row
+
+        G = G / G.sum(1, keepdim=True).clamp(min=1)
+
+        A = 1 - G.sum(1)
+
+        # warnings.warn("harmonic recurrence", RuntimeWarning)
+        # har = torch.arange(t0, t1, device = G.device).float() + 1
+        # A = har / (har + 1)
+        # G = G / har
+
+        gated_V = torch.einsum("nhrt,nhtd->nrtd", G, V)
+        gated_K = torch.einsum("nhrt,nhtd->nrtd", G, K)
+
+        # We start from cached values, which matters in inference
+
+        init_rec_V = self.rec_V[:, :, t0 - L : t0]
+        init_rec_K = self.rec_K[:, :, t0 - L : t0]
+
         #################################################################
         # Associative scan
 
         # Here there is a trick: Since the stack at position t is
-        # computed by updating that at position t-CL, the parallel
-        # scan operates with a period of CL. To do so we split the
-        # sequence indexing in two axes, the second of size CL, and
+        # computed by updating that at position t-L, the parallel
+        # scan operates with a period of L. To do so we split the
+        # sequence indexing in two axes, the second of size L, and
         # run the parallel scan using the first as the sequence index.
 
-        A = A.unflatten(2, (-1, CL))
-        gated_V = gated_V.unflatten(2, (-1, CL))
-        gated_K = gated_K.unflatten(2, (-1, CL))
+        A = A.unflatten(2, (-1, L))
+        gated_V = gated_V.unflatten(2, (-1, L))
+        gated_K = gated_K.unflatten(2, (-1, L))
 
         next_V = pscan_dim(A, gated_V, init_rec_V, dim=2)
         next_K = pscan_dim(A, gated_K, init_rec_K, dim=2)
@@ -609,14 +669,14 @@ class Caterpillar(nn.Module):
         # the column in the caterpillar
 
         windowed_V = moving_window(
-            self.rec_V[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
+            self.rec_V[:, :, t0 - L + 1 : t1], dim=2, win_dim=3, win_size=L
         )
 
         windowed_K = moving_window(
-            self.rec_K[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
+            self.rec_K[:, :, t0 - L + 1 : t1], dim=2, win_dim=3, win_size=L
         )
 
-        # We have an attention score for each of the CHxCL values
+        # We have an attention score for each of the RxL values
 
         ar = torch.einsum(
             "nhtd,nftld->nhtfl",