Update.
[mygptrnn.git] / mygpt.py
index 5451584..67c5cfd 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -21,6 +21,8 @@ from torch.nn import functional as F
 
 import ffutils
 
+# from blanket import blanket
+
 # import memload
 
 ######################################################################
@@ -202,7 +204,7 @@ class DumbRec(nn.Module):
         attention_dropout=0.0,
         len_max=1e5,
         logger=print,
-        **kwargs,
+        args=None,
     ):
         super().__init__()
 
@@ -333,7 +335,7 @@ class KVRec(nn.Module):
         attention_dropout=0.0,
         len_max=1e5,
         logger=print,
-        **kwargs,
+        args=None,
     ):
         super().__init__()
 
@@ -487,44 +489,27 @@ class Caterpillar(nn.Module):
         attention_dropout=0.0,
         len_max=1e5,
         logger=print,
-        **kwargs,
+        args=None,
     ):
         super().__init__()
 
         warnings.warn("Caterpillar", RuntimeWarning)
 
-        def randw(*d, amplitude=None):
-            if amplitude is None:
-                amplitude = 1 / math.sqrt(d[-1])
-            return nn.Parameter(amplitude * torch.randn(*d))
+        def randw(*d, factor=1):
+            return nn.Parameter(torch.randn(*d) * factor / math.sqrt(d[-1]))
 
         self.caterpillar_length = caterpillar_length
         self.caterpillar_height = caterpillar_height
         self.attention_dropout = attention_dropout
 
-        ######################################################################
-        # sup_args
-
-        x = kwargs.get("gate_dropout")
-        if x is None:
-            self.proba_gate_dropout = 0.0
-        else:
-            self.proba_gate_dropout = float(x)
-
-        logger(f"self.proba_gate_dropout {self.proba_gate_dropout}")
-
-        x = kwargs.get("default_bg")
-        if x is None:
-            default_bg = -math.log(caterpillar_height - 1)
-        else:
-            default_bg = float(x)
-
-        logger(f"default_bg {default_bg}")
+        self.gate_dropout_proba = args.gate_dropout_proba
+        self.gate_dropout_sync = args.gate_dropout_sync
+        self.gate_dropout_replace = args.gate_dropout_replace
 
         ######################################################################
 
-        self.w_G = randw(nb_heads, caterpillar_height, dim_model)
-        self.b_G = nn.Parameter(torch.full((nb_heads, caterpillar_height), default_bg))
+        self.w_G = randw(nb_heads, caterpillar_height, dim_model, factor=1e-3)
+        self.b_G = nn.Parameter(torch.full((nb_heads, caterpillar_height), 0.0))
 
         self.w_K = randw(nb_heads, dim_qk, dim_model)
         self.w_V = randw(nb_heads, dim_v, dim_model)
@@ -542,14 +527,14 @@ class Caterpillar(nn.Module):
             dim_v,
         )
 
-    def reset_inner_loss(self):
-        self.acc_attention = 0
-        self.acc_nb = 0
+    def reset_inner_loss(self):
+    # self.acc_attention = 0
+    # self.acc_nb = 0
 
-    def get_inner_loss(self):
-        # warnings.warn("l2 regularization", RuntimeWarning)
-        # return (self.acc_attention / self.acc_nb).pow(2).sum()
-        return torch.tensor([0], device=self.w_Q.device)
+    def get_inner_loss(self):
+    # warnings.warn("l2 regularization", RuntimeWarning)
+    # return (self.acc_attention / self.acc_nb).pow(2).sum()
+    # return torch.tensor([0], device=self.w_Q.device)
 
     def forward(self, bs):
         # Dimensions to make the source a bit clearer, that's needed
@@ -584,6 +569,8 @@ class Caterpillar(nn.Module):
         V = torch.einsum("ntc,hdc->nhtd", X, self.w_V)
         K = torch.einsum("ntc,hdc->nhtd", X, self.w_K)
 
+        # V, K = blanket(V), blanket(K)
+
         ######################################################################
         # Compute the recurrent state
 
@@ -602,12 +589,14 @@ class Caterpillar(nn.Module):
 
         G = G / G.sum(1, keepdim=True).clamp(min=1)
 
+        # G_star = (1 - G).log().sum(1, keepdim=True).exp()
+
         ######################################################################
 
         def recurrence(G, V, K):
             # We prepare the arguments for the parallel scan
 
-            A = 1 - G.sum(1)
+            A = 1 - G.sum(dim=1)
 
             gated_V = torch.einsum("nhrt,nhtd->nrtd", G, V)
             gated_K = torch.einsum("nhrt,nhtd->nrtd", G, K)
@@ -627,11 +616,8 @@ class Caterpillar(nn.Module):
             gated_V = gated_V.unflatten(2, (-1, L))
             gated_K = gated_K.unflatten(2, (-1, L))
 
-            next_V = pscan_dim(A, gated_V, init_rec_V, dim=2)
-            next_K = pscan_dim(A, gated_K, init_rec_K, dim=2)
-
-            next_V = next_V.flatten(2, 3)
-            next_K = next_K.flatten(2, 3)
+            next_V = pscan_dim(A, gated_V, init_rec_V, dim=2).flatten(2, 3)
+            next_K = pscan_dim(A, gated_K, init_rec_K, dim=2).flatten(2, 3)
 
             return next_V, next_K
 
@@ -639,31 +625,44 @@ class Caterpillar(nn.Module):
 
         next_V, next_K = recurrence(G, V, K)
 
-        if self.training and self.proba_gate_dropout > 0.0:
+        if self.training and self.gate_dropout_proba > 0.0:
             # G is NxHxRxT where r is the caterpillar's row.
 
             warnings.warn("gate dropout", RuntimeWarning)
 
-            # kill = (
-            # torch.rand(G.size(), device=G.device) <= self.proba_gate_dropout
-            # ).float()
+            if self.gate_dropout_sync:
+                shape_kill = (N, 1, 1)
+            else:
+                shape_kill = (N, H, R)
 
+            # Pick a point in each of the NxHxR timeline and set this
+            # entry and the following to 1
             kill = (
-                torch.rand(N, H, R, t1 - t0, device=G.device).sort(dim=3).indices == 0
+                torch.rand(*shape_kill, t1 - t0, device=G.device).sort(dim=3).indices
+                == 0
             ).cumsum(dim=3)
+
+            # Keep these mask for only some of the NxHxR
             kill = kill * (
-                torch.rand(N, H, R, 1, device=G.device) <= self.proba_gate_dropout
+                torch.rand(*shape_kill, 1, device=G.device) <= self.gate_dropout_proba
             )
 
+            # The coefficient to keep are the complementary
             mask = 1 - kill
 
             masked_next_V, masked_next_K = recurrence(G * mask, V, K)
 
-            next_V = next_V.detach() + (masked_next_V - masked_next_V.detach()) / (
-                1 - self.proba_gate_dropout
+            if self.gate_dropout_replace:
+                next_V = next_V.detach()
+                next_K = next_K.detach()
+
+            warnings.warn("the rescaling is probably a bad idea", RuntimeWarning)
+
+            next_V = next_V + (masked_next_V - masked_next_V.detach()) / (
+                1 - self.gate_dropout_proba
             )
-            next_K = next_K.detach() + (masked_next_K - masked_next_K.detach()) / (
-                1 - self.proba_gate_dropout
+            next_K = next_K + (masked_next_K - masked_next_K.detach()) / (
+                1 - self.gate_dropout_proba
             )
 
         self.rec_V[:, :, t0:t1] = next_V
@@ -674,8 +673,10 @@ class Caterpillar(nn.Module):
 
         Q = torch.einsum("ntc,hdc->nhtd", X, self.w_Q)
 
-        # We build tensors NxHxTxFxL where N is the sample index, H
-        # the head, T the time, F the row in the caterpillar, and L
+        # Q = blanket(Q)
+
+        # We build tensors NxHxTxRxL where N is the sample index, H
+        # the head, T the time, R the row in the caterpillar, and L
         # the column in the caterpillar
 
         windowed_V = moving_window(
@@ -689,7 +690,7 @@ class Caterpillar(nn.Module):
         # We have an attention score for each of the RxL values
 
         ar = torch.einsum(
-            "nhtd,nftld->nhtfl",
+            "nhtd,nrtld->nhtrl",
             Q,
             windowed_K,
         ) / math.sqrt(DK)
@@ -711,6 +712,8 @@ class Caterpillar(nn.Module):
 
         # Compute the final output
 
+        # Y = blanket(Y)
+
         self.cache_Y[:, t0:t1] = Y @ self.w_O
 
         return BracketedSequence(self.cache_Y, t0, t1 - t0, bs.init_cache)
@@ -729,7 +732,7 @@ class QKVAttention(nn.Module):
         causal=False,
         attention_dropout=0.0,
         logger=print,
-        **kwargs,
+        args=None,
     ):
         super().__init__()
 
@@ -820,9 +823,9 @@ class MyGPT(nn.Module):
         causal=False,
         dropout=0.0,
         len_max=1e5,
-        attention_layer="kvrec",
+        attention_layer="caterpillar",
         logger=print,
-        **kwargs,
+        args=None,
     ):
         super().__init__()
 
@@ -860,7 +863,7 @@ class MyGPT(nn.Module):
                     causal=causal,
                     attention_dropout=dropout,
                     logger=logger,
-                    **kwargs,
+                    args=args,
                 )
             elif attention_layer == "dumbrec":
                 return DumbRec(
@@ -871,7 +874,7 @@ class MyGPT(nn.Module):
                     nb_lines=nb_lines,
                     attention_dropout=dropout,
                     logger=logger,
-                    **kwargs,
+                    args=args,
                 )
             elif attention_layer == "kvrec":
                 return KVRec(
@@ -882,7 +885,7 @@ class MyGPT(nn.Module):
                     nb_lines=nb_lines,
                     attention_dropout=dropout,
                     logger=logger,
-                    **kwargs,
+                    args=args,
                 )
             elif attention_layer == "caterpillar":
                 return Caterpillar(
@@ -894,7 +897,7 @@ class MyGPT(nn.Module):
                     caterpillar_height=self.caterpillar_height,
                     attention_dropout=dropout,
                     logger=logger,
-                    **kwargs,
+                    args=args,
                 )
             else:
                 raise ValueError(f"Unknown attention type {attention_layer}.")
@@ -1025,7 +1028,115 @@ class MyGPT(nn.Module):
 ######################################################################
 
 if __name__ == "__main__":
-    print("Basic check.")
+    import argparse
+
+    import numpy as np
+    import matplotlib.pyplot as plt
+    import matplotlib.collections as mc
+
+    args = argparse.Namespace(
+        gate_dropout_proba=0.0, gate_dropout_sync=True, gate_dropout_replace=False
+    )
+
+    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+    dim_model, dim_keys, nb_heads = 512, 64, 1
+    dropout = 0.1
+
+    caterpillar = Caterpillar(
+        dim_model=dim_model,
+        dim_qk=dim_keys,
+        dim_v=dim_model // nb_heads,
+        nb_heads=nb_heads,
+        caterpillar_length=16,
+        caterpillar_height=32,
+        attention_dropout=dropout,
+        args=args,
+    ).to(device)
+
+    qkv = QKVAttention(
+        dim_model=dim_model,
+        dim_qk=dim_keys,
+        dim_v=dim_model // nb_heads,
+        nb_heads=nb_heads,
+        causal=True,
+        attention_dropout=dropout,
+        args=args,
+    ).to(device)
+
+    linear = CacheWrapper(nn.Linear(512, 512)).to(device)
+
+    x = torch.randn(1, 256, dim_model)
+
+    x = x.to(device)
+    x.requires_grad_()
+
+    ######################################################################
+
+    fig = plt.figure()
+    fig.set_figheight(6)
+    fig.set_figwidth(8)
+
+    ax = fig.add_subplot(1, 1, 1)
+
+    # ax.set_xlim(-1.5, 1.5)
+    # ax.set_ylim(-1.5, 1.5)
+    # ax.set(aspect=1)
+    # ax.spines.right.set_visible(False)
+    # ax.spines.top.set_visible(False)
+
+    # dt = 0.01
+    # t = np.arange(dt, 20.0, dt)
+    # ax.semilogx(t, np.exp(-t / 5.0))
+    # ax.grid()
+    ax.set_yscale("log")
+
+    ######################################################################
+
+    for label, model, thickness in [
+        ("nn.Linear", linear, 0.2),
+        ("mygpy.QKVAttention", qkv, 1),
+        ("mygpt.Caterpillar", caterpillar, 2),
+    ]:
+        y = model(BracketedSequence(x, 32, x.size(1) - 32, init_cache=True)).x
+
+        for n, p in [("input", x)] + list(model.named_parameters()):
+            print(f"Processing {model}.{n}")
+            data = []
+            for t in range(y.size(1)):
+                sg = 0
+                for d in torch.randperm(y.size(2))[:8]:
+                    sg += torch.autograd.grad(y[0, t, d], p, retain_graph=True)[0]
+                assert not sg.isinf().any()
+                assert not sg.isnan().any()
+                data.append([t, sg.sum().item()])
+
+            data = torch.tensor(data)
+            # cx, cy = data[:, 0], data[:, 1]
+            cy = data[:, 1].sort().values
+            cx = torch.linspace(0, 1, cy.size(0))
+            ax.plot(
+                cx, cy, label=label + "." + n, linewidth=thickness
+            )  # , color='gray', label='Input')
+
+    # ax.legend(frameon=False, loc="top right")
+
+    # Put a legend to the right of the current axis
+    box = ax.get_position()
+    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
+    ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))
+
+    filename = "plot.pdf"
+    print(f"saving {filename}")
+    fig.savefig(filename, bbox_inches="tight")
+
+    # if args.window and hasattr(plt.get_current_fig_manager(), 'window'):
+    # plt.get_current_fig_manager().window.setGeometry(2, 2, 1024, 768)
+    # plt.show()
+
+    exit(0)
+
+    ######################################################################
 
     m = Caterpillar(
         dim_model=4,
@@ -1047,8 +1158,6 @@ if __name__ == "__main__":
     print((y1 - torch.cat([y3a, y3b], dim=1)).abs().max())
     exit(0)
 
-    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
     vocabulary_size = 128
     x = torch.randint(vocabulary_size, (6, 1024))