Update.
[mygptrnn.git] / mygpt.py
index 040845e..c833012 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -21,6 +21,8 @@ from torch.nn import functional as F
 
 import ffutils
 
+# from blanket import blanket
+
 # import memload
 
 ######################################################################
@@ -500,17 +502,13 @@ class Caterpillar(nn.Module):
         self.caterpillar_height = caterpillar_height
         self.attention_dropout = attention_dropout
 
-        self.gate_dropout_proba = args.gate_dropout_proba
-        self.gate_dropout_sync = args.gate_dropout_sync
-        self.gate_dropout_replace = args.gate_dropout_replace
-
         ######################################################################
 
-        self.w_G = randw(nb_heads, caterpillar_height, dim_model, factor=1.0)
+        self.w_G = randw(nb_heads, caterpillar_height, dim_model)
         self.b_G = nn.Parameter(torch.full((nb_heads, caterpillar_height), 0.0))
 
         self.w_K = randw(nb_heads, dim_qk, dim_model)
-        self.w_V = randw(nb_heads, dim_v, dim_model, factor=1)
+        self.w_V = randw(nb_heads, dim_v, dim_model)
         self.w_Q = randw(nb_heads, dim_qk, dim_model)
         self.w_O = randw(dim_v * nb_heads, dim_model)
 
@@ -583,83 +581,32 @@ class Caterpillar(nn.Module):
         # Clip the gating to avoid values greater than 1 when several
         # heads hit the same row
 
-        # G = G / G.sum(1, keepdim=True).clamp(min=1)
-
-        H = (1 - G).log().sum(1, keepdim=True).exp()
+        G = G / G.sum(1, keepdim=True).clamp(min=1)
 
         ######################################################################
 
-        def recurrence(G, V, K):
-            # We prepare the arguments for the parallel scan
-
-            A = H
-
-            gated_V = torch.einsum("nhrt,nhtd->nrtd", H * G / (1 - G), V)
-            gated_K = torch.einsum("nhrt,nhtd->nrtd", H * G / (1 - G), K)
-
-            # We start from cached values, which matters in inference
-
-            init_rec_V = self.rec_V[:, :, t0 - L : t0]
-            init_rec_K = self.rec_K[:, :, t0 - L : t0]
-
-            # Here there is a trick: Since the stack at position t is
-            # computed by updating that at position t-L, the parallel
-            # scan operates with a period of L. To do so we split the
-            # sequence indexing in two axes, the second of size L, and
-            # run the parallel scan using the first as the sequence index.
-
-            A = A.unflatten(2, (-1, L))
-            gated_V = gated_V.unflatten(2, (-1, L))
-            gated_K = gated_K.unflatten(2, (-1, L))
-
-            next_V = pscan_dim(A, gated_V, init_rec_V, dim=2).flatten(2, 3)
-            next_K = pscan_dim(A, gated_K, init_rec_K, dim=2).flatten(2, 3)
+        A = 1 - G.sum(dim=1)
 
-            return next_V, next_K
+        gated_V = torch.einsum("nhrt,nhtd->nrtd", G, V)
+        gated_K = torch.einsum("nhrt,nhtd->nrtd", G, K)
 
-        #################################################################
+        # We start from cached values, which matters in inference
 
-        next_V, next_K = recurrence(G, V, K)
+        init_rec_V = self.rec_V[:, :, t0 - L : t0]
+        init_rec_K = self.rec_K[:, :, t0 - L : t0]
 
-        if self.training and self.gate_dropout_proba > 0.0:
-            # G is NxHxRxT where r is the caterpillar's row.
+        # Here there is a trick: Since the stack at position t is
+        # computed by updating that at position t-L, the parallel
+        # scan operates with a period of L. To do so we split the
+        # sequence indexing in two axes, the second of size L, and
+        # run the parallel scan using the first as the sequence index.
 
-            warnings.warn("gate dropout", RuntimeWarning)
+        A = A.unflatten(2, (-1, L))
+        gated_V = gated_V.unflatten(2, (-1, L))
+        gated_K = gated_K.unflatten(2, (-1, L))
 
-            if self.gate_dropout_sync:
-                shape_kill = (N, 1, 1)
-            else:
-                shape_kill = (N, H, R)
-
-            # Pick a point in each of the NxHxR timeline and set this
-            # entry and the following to 1
-            kill = (
-                torch.rand(*shape_kill, t1 - t0, device=G.device).sort(dim=3).indices
-                == 0
-            ).cumsum(dim=3)
-
-            # Keep these mask for only some of the NxHxR
-            kill = kill * (
-                torch.rand(*shape_kill, 1, device=G.device) <= self.gate_dropout_proba
-            )
-
-            # The coefficient to keep are the complementary
-            mask = 1 - kill
-
-            masked_next_V, masked_next_K = recurrence(G * mask, V, K)
-
-            if self.gate_dropout_replace:
-                next_V = next_V.detach()
-                next_K = next_K.detach()
-
-            warnings.warn("the rescaling is probably a bad idea", RuntimeWarning)
-
-            next_V = next_V + (masked_next_V - masked_next_V.detach()) / (
-                1 - self.gate_dropout_proba
-            )
-            next_K = next_K + (masked_next_K - masked_next_K.detach()) / (
-                1 - self.gate_dropout_proba
-            )
+        next_V = pscan_dim(A, gated_V, init_rec_V, dim=2).flatten(2, 3)
+        next_K = pscan_dim(A, gated_K, init_rec_K, dim=2).flatten(2, 3)
 
         self.rec_V[:, :, t0:t1] = next_V
         self.rec_K[:, :, t0:t1] = next_K
@@ -669,6 +616,8 @@ class Caterpillar(nn.Module):
 
         Q = torch.einsum("ntc,hdc->nhtd", X, self.w_Q)
 
+        # Q = blanket(Q)
+
         # We build tensors NxHxTxRxL where N is the sample index, H
         # the head, T the time, R the row in the caterpillar, and L
         # the column in the caterpillar
@@ -704,8 +653,6 @@ class Caterpillar(nn.Module):
             windowed_V,
         ).flatten(2)
 
-        # Compute the final output
-
         self.cache_Y[:, t0:t1] = Y @ self.w_O
 
         return BracketedSequence(self.cache_Y, t0, t1 - t0, bs.init_cache)
@@ -722,6 +669,7 @@ class QKVAttention(nn.Module):
         dim_v,
         nb_heads=1,
         causal=False,
+        horizon=None,
         attention_dropout=0.0,
         logger=print,
         args=None,
@@ -732,6 +680,7 @@ class QKVAttention(nn.Module):
             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
 
         self.causal = causal
+        self.horizon = horizon
         self.attention_dropout = attention_dropout
         self.record_attention = False
 
@@ -775,6 +724,17 @@ class QKVAttention(nn.Module):
                     torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
                     < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
                 )
+
+                if self.horizon is not None:
+                    self.cache_attzero = torch.logical_or(
+                        self.cache_attzero,
+                        torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
+                        >= torch.arange(x_q.size(1), device=q.device)[
+                            None, None, None, :
+                        ]
+                        + self.horizon,
+                    )
+
             a = a.masked_fill(
                 self.cache_attzero[
                     :, :, bs.first : bs.first + bs.nb, : bs.first + bs.nb
@@ -826,9 +786,10 @@ class MyGPT(nn.Module):
             "dumbrec",
             "kvrec",
             "caterpillar",
+            "attcat",
         }, f"Unknown attention operator {attention_layer}."
 
-        if attention_layer == "caterpillar":
+        if attention_layer == "caterpillar" or attention_layer == "attcat":
             assert nb_lines % caterpillar_height == 0
             self.caterpillar_length = nb_lines // caterpillar_height
             self.caterpillar_height = caterpillar_height
@@ -847,59 +808,99 @@ class MyGPT(nn.Module):
 
         def attlayer():
             if attention_layer == "mha":
-                return QKVAttention(
-                    dim_model=dim_model,
-                    dim_qk=dim_keys,
-                    dim_v=dim_model // nb_heads,
-                    nb_heads=nb_heads,
-                    causal=causal,
-                    attention_dropout=dropout,
-                    logger=logger,
-                    args=args,
+                return WithResidual(
+                    CacheWrapper(nn.LayerNorm((dim_model,))),
+                    QKVAttention(
+                        dim_model=dim_model,
+                        dim_qk=dim_keys,
+                        dim_v=dim_model // nb_heads,
+                        nb_heads=nb_heads,
+                        causal=causal,
+                        attention_dropout=dropout,
+                        logger=logger,
+                        args=args,
+                    ),
                 )
             elif attention_layer == "dumbrec":
-                return DumbRec(
-                    dim_model=dim_model,
-                    dim_qk=dim_keys,
-                    dim_v=dim_model // nb_heads,
-                    nb_heads=nb_heads,
-                    nb_lines=nb_lines,
-                    attention_dropout=dropout,
-                    logger=logger,
-                    args=args,
+                return WithResidual(
+                    CacheWrapper(nn.LayerNorm((dim_model,))),
+                    DumbRec(
+                        dim_model=dim_model,
+                        dim_qk=dim_keys,
+                        dim_v=dim_model // nb_heads,
+                        nb_heads=nb_heads,
+                        nb_lines=nb_lines,
+                        attention_dropout=dropout,
+                        logger=logger,
+                        args=args,
+                    ),
                 )
             elif attention_layer == "kvrec":
-                return KVRec(
-                    dim_model=dim_model,
-                    dim_qk=dim_keys,
-                    dim_v=dim_model // nb_heads,
-                    nb_heads=nb_heads,
-                    nb_lines=nb_lines,
-                    attention_dropout=dropout,
-                    logger=logger,
-                    args=args,
+                return WithResidual(
+                    CacheWrapper(nn.LayerNorm((dim_model,))),
+                    KVRec(
+                        dim_model=dim_model,
+                        dim_qk=dim_keys,
+                        dim_v=dim_model // nb_heads,
+                        nb_heads=nb_heads,
+                        nb_lines=nb_lines,
+                        attention_dropout=dropout,
+                        logger=logger,
+                        args=args,
+                    ),
                 )
             elif attention_layer == "caterpillar":
-                return Caterpillar(
-                    dim_model=dim_model,
-                    dim_qk=dim_keys,
-                    dim_v=dim_model // nb_heads,
-                    nb_heads=nb_heads,
-                    caterpillar_length=self.caterpillar_length,
-                    caterpillar_height=self.caterpillar_height,
-                    attention_dropout=dropout,
-                    logger=logger,
-                    args=args,
+                return WithResidual(
+                    CacheWrapper(nn.LayerNorm((dim_model,))),
+                    Caterpillar(
+                        dim_model=dim_model,
+                        dim_qk=dim_keys,
+                        dim_v=dim_model // nb_heads,
+                        nb_heads=nb_heads,
+                        caterpillar_length=self.caterpillar_length,
+                        caterpillar_height=self.caterpillar_height,
+                        attention_dropout=dropout,
+                        logger=logger,
+                        args=args,
+                    ),
+                )
+            elif attention_layer == "attcat":
+                return nn.Sequential(
+                    WithResidual(
+                        CacheWrapper(nn.LayerNorm((dim_model,))),
+                        QKVAttention(
+                            dim_model=dim_model,
+                            dim_qk=dim_keys,
+                            dim_v=dim_model // nb_heads,
+                            nb_heads=nb_heads,
+                            causal=causal,
+                            horizon=self.caterpillar_length,
+                            attention_dropout=dropout,
+                            logger=logger,
+                            args=args,
+                        ),
+                    ),
+                    WithResidual(
+                        CacheWrapper(nn.LayerNorm((dim_model,))),
+                        Caterpillar(
+                            dim_model=dim_model,
+                            dim_qk=dim_keys,
+                            dim_v=dim_model // nb_heads,
+                            nb_heads=nb_heads,
+                            caterpillar_length=self.caterpillar_length,
+                            caterpillar_height=self.caterpillar_height,
+                            attention_dropout=dropout,
+                            logger=logger,
+                            args=args,
+                        ),
+                    ),
                 )
             else:
                 raise ValueError(f"Unknown attention type {attention_layer}.")
 
         for b in range(nb_blocks):
             trunk_blocks += [
-                WithResidual(
-                    CacheWrapper(nn.LayerNorm((dim_model,))),
-                    attlayer(),
-                ),
+                attlayer(),
                 WithResidual(
                     CacheWrapper(
                         nn.LayerNorm((dim_model,)),
@@ -1081,31 +1082,35 @@ if __name__ == "__main__":
     # t = np.arange(dt, 20.0, dt)
     # ax.semilogx(t, np.exp(-t / 5.0))
     # ax.grid()
+    ax.set_yscale("log")
 
     ######################################################################
 
-    for label, model in [
-        # ("nn.Linear", linear),
-        ("mygpy.QKVAttention", qkv),
-        ("mygpt.Caterpillar", caterpillar),
+    for label, model, thickness in [
+        ("nn.Linear", linear, 0.2),
+        ("mygpy.QKVAttention", qkv, 1),
+        ("mygpt.Caterpillar", caterpillar, 2),
     ]:
         y = model(BracketedSequence(x, 32, x.size(1) - 32, init_cache=True)).x
 
-        data = []
-        for t in range(y.size(1)):
-            for d in torch.randperm(y.size(2))[:8]:
-                g = torch.autograd.grad(y[0, t, d], x, retain_graph=True)[0]
-                sg = g.pow(2).sum().item()
-                # sg = 0
-                # for p in model.parameters():
-                # g = torch.autograd.grad(y[0, t, d], p, retain_graph=True)[0]
-                # sg = sg + g.pow(2).sum().item()
-                data.append([t, sg])
-
-        data = torch.tensor(data)
-        ax.scatter(
-            data[:, 0], data[:, 1], s=1, label=label
-        )  # , color='gray', label='Input')
+        for n, p in [("input", x)] + list(model.named_parameters()):
+            print(f"Processing {model}.{n}")
+            data = []
+            for t in range(y.size(1)):
+                sg = 0
+                for d in torch.randperm(y.size(2))[:8]:
+                    sg += torch.autograd.grad(y[0, t, d], p, retain_graph=True)[0]
+                assert not sg.isinf().any()
+                assert not sg.isnan().any()
+                data.append([t, sg.sum().item()])
+
+            data = torch.tensor(data)
+            # cx, cy = data[:, 0], data[:, 1]
+            cy = data[:, 1].sort().values
+            cx = torch.linspace(0, 1, cy.size(0))
+            ax.plot(
+                cx, cy, label=label + "." + n, linewidth=thickness
+            )  # , color='gray', label='Input')
 
     # ax.legend(frameon=False, loc="top right")