Update.
[picoclvr.git] / tasks.py
index 15d97b8..0858282 100755 (executable)
--- a/tasks.py
+++ b/tasks.py
@@ -1,5 +1,10 @@
 #!/usr/bin/env python
 
+# Any copyright is dedicated to the Public Domain.
+# https://creativecommons.org/publicdomain/zero/1.0/
+
+# Written by Francois Fleuret <francois@fleuret.org>
+
 import math, os, tqdm
 
 import torch, torchvision
@@ -7,6 +12,13 @@ import torch, torchvision
 from torch import nn
 from torch.nn import functional as F
 
+from mygpt import BracketedSequence
+
+try:
+    from graph import save_attention_image
+except ImportError:
+    save_attention_image = None
+
 ######################################################################
 
 
@@ -20,6 +32,8 @@ def masked_inplace_autoregression(
     progress_bar_desc="autoregression",
     device=torch.device("cpu"),
 ):
+    assert input.size() == ar_mask.size()
+
     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
 
     if progress_bar_desc is not None:
@@ -27,7 +41,7 @@ def masked_inplace_autoregression(
             batches,
             dynamic_ncols=True,
             desc=progress_bar_desc,
-            total=input.size(0) // batch_size,
+            total=(input.size(0) + batch_size - 1) // batch_size,
         )
 
     with torch.autograd.no_grad():
@@ -58,6 +72,156 @@ class Task:
         pass
 
 
+####################
+
+import problems
+
+
+class SandBox(Task):
+    def __init__(
+        self,
+        problem,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        logger=None,
+        device=torch.device("cpu"),
+        max_nb_codes=1024,
+    ):
+        super().__init__()
+
+        self.batch_size = batch_size
+        self.device = device
+        self.problem = problem
+
+        self.train_input, self.train_ar_mask = self.problem.generate_sequences(
+            nb_train_samples
+        )
+        self.test_input, self.test_ar_mask = self.problem.generate_sequences(
+            nb_test_samples
+        )
+
+        self.train_input, self.train_ar_mask = self.train_input.to(
+            device
+        ), self.train_ar_mask.to(device)
+        self.test_input, self.test_ar_mask = self.test_input.to(
+            device
+        ), self.test_ar_mask.to(device)
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+
+        # A bit of paranoia never hurts
+        assert (
+            self.nb_codes <= max_nb_codes
+            and self.train_input.min() >= 0
+            and self.test_input.min() >= 0
+            and tuple(x.item() for x in self.train_ar_mask.unique()) in { (0,), (1,), (0,1) }
+            and tuple(x.item() for x in self.test_ar_mask.unique()) in { (0,), (1,), (0,1) }
+        )
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
+    ):
+        def compute_accuracy(input, ar_mask, logger=None):
+            input, ar_mask = input[:nmax], ar_mask[:nmax]
+            result = input.clone() * (1 - ar_mask)
+
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                progress_bar_desc=None,
+                device=self.device,
+            )
+
+            if logger is not None:
+                for sp, st in zip(result[:10], input[:10]):
+                    logger(
+                        f"test_sequences {n_epoch} prediction   {self.problem.seq2str(sp)}"
+                    )
+                    logger(
+                        f"               {n_epoch} ground truth {self.problem.seq2str(st)}"
+                    )
+
+            nb_total, nb_correct = self.problem.compute_nb_correct(input, ar_mask, result)
+
+            # nb_total = ar_mask.sum().item()
+            # nb_correct = ((result == input).long() * ar_mask).sum().item()
+
+            return nb_total, nb_correct
+
+        train_nb_total, train_nb_correct = compute_accuracy(
+            self.train_input, self.train_ar_mask
+        )
+
+        logger(
+            f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+        )
+
+        test_nb_total, test_nb_correct = compute_accuracy(
+            self.test_input, self.test_ar_mask, logger
+        )
+
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
+
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
+        if save_attention_image is None:
+            logger("no save_attention_image (is pycairo installed?)")
+        else:
+            for k in range(10):
+                ns = torch.randint(self.test_input.size(0), (1,)).item()
+                input = self.test_input[ns : ns + 1].clone()
+
+                with torch.autograd.no_grad():
+                    t = model.training
+                    model.eval()
+                    model.record_attention(True)
+                    model(BracketedSequence(input))
+                    model.train(t)
+                    ram = model.retrieve_attention()
+                    model.record_attention(False)
+
+                tokens_output = [c for c in self.problem.seq2str(input[0])]
+                tokens_input = ["n/a"] + tokens_output[:-1]
+                for n_head in range(ram[0].size(1)):
+                    filename = os.path.join(
+                        result_dir, f"sandbox_attention_{k}_h{n_head}.pdf"
+                    )
+                    attention_matrices = [m[0, n_head] for m in ram]
+                    save_attention_image(
+                        filename,
+                        tokens_input,
+                        tokens_output,
+                        attention_matrices,
+                        k_top=10,
+                        # min_total_attention=0.9,
+                        token_gap=12,
+                        layer_gap=50,
+                    )
+                    logger(f"wrote {filename}")
+
+
 ######################################################################
 
 import picoclvr
@@ -106,6 +270,8 @@ class PicoCLVR(Task):
         pruner_train=None,
         pruner_eval=None,
     ):
+        super().__init__()
+
         def generate_descr(nb, cache_suffix, pruner):
             return picoclvr.generate(
                 nb,
@@ -210,6 +376,10 @@ class PicoCLVR(Task):
             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
         )
 
+        logger(
+            f"main_test_accuracy {n_epoch} {1-nb_missing_properties/nb_requested_properties}"
+        )
+
     ######################################################################
 
     def produce_results(
@@ -294,6 +464,8 @@ class MNIST(Task):
     def __init__(
         self, nb_train_samples, nb_test_samples, batch_size, device=torch.device("cpu")
     ):
+        super().__init__()
+
         self.nb_train_samples = (nb_train_samples,)
         self.nb_test_samples = (nb_test_samples,)
         self.batch_size = batch_size
@@ -364,6 +536,8 @@ class Maze(Task):
         nb_walls,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.height = height
         self.width = width
@@ -476,6 +650,8 @@ class Maze(Task):
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
         if count is not None:
             proportion_optimal = count.diagonal().sum().float() / count.sum()
             logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
@@ -535,6 +711,8 @@ class Snake(Task):
         prompt_length,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.height = height
         self.width = width
@@ -613,6 +791,8 @@ class Snake(Task):
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
 
 ######################################################################
 
@@ -633,6 +813,8 @@ class Stack(Task):
         fraction_values_for_train=None,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.nb_steps = nb_steps
         self.nb_stacks = nb_stacks
@@ -720,6 +902,8 @@ class Stack(Task):
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
         ##############################################################
         # Log a few generated sequences
         input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
@@ -748,6 +932,297 @@ class Stack(Task):
         ##############################################################
 
 
+######################################################################
+
+import rpl
+
+
+class RPL(Task):
+    def tensorize(self, sequences):
+        len_max = max([len(x) for x in sequences])
+        return torch.cat(
+            [
+                torch.tensor(
+                    [
+                        [
+                            self.token2id[str(c)]
+                            for c in s + ["<nul>"] * (len_max - len(s))
+                        ]
+                        for s in sequences
+                    ]
+                )
+            ],
+            0,
+        )
+
+    def seq2str(self, seq):
+        return " ".join([self.id2token[i] for i in seq])
+
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        nb_starting_values=3,
+        max_input=9,
+        prog_len=6,
+        nb_runs=5,
+        no_prog=False,
+        logger=None,
+        device=torch.device("cpu"),
+    ):
+        super().__init__()
+
+        self.batch_size = batch_size
+        self.device = device
+        self.no_prog = no_prog
+
+        train_sequences = [
+            rpl.generate(
+                nb_starting_values=nb_starting_values,
+                nb_result_values_max=4 * nb_starting_values,
+                max_input=max_input,
+                prog_len=prog_len,
+                nb_runs=nb_runs,
+            )
+            for _ in tqdm.tqdm(range(nb_train_samples), desc="train-data")
+        ]
+
+        test_sequences = [
+            rpl.generate(
+                nb_starting_values=nb_starting_values,
+                nb_result_values_max=4 * nb_starting_values,
+                max_input=max_input,
+                prog_len=prog_len,
+                nb_runs=nb_runs,
+            )
+            for _ in tqdm.tqdm(range(nb_test_samples), desc="test-data")
+        ]
+
+        symbols = list(
+            set(["<nul>"] + [x for l in train_sequences + test_sequences for x in l])
+        )
+        val_max = max([x if type(x) is int else 0 for x in symbols])
+        symbols = list(filter(lambda x: type(x) is str, symbols))
+        symbols.sort()
+        symbols += [str(n) for n in range(val_max + 1)]
+        self.token2id = dict([(c, n) for n, c in enumerate(symbols)])
+        self.id2token = dict([(n, c) for c, n in self.token2id.items()])
+
+        self.t_nul = self.token2id["<nul>"]
+        self.t_input = self.token2id["<in>"]
+        self.t_output = self.token2id["<out>"]
+        self.t_prog = self.token2id["<prg>"]
+        self.t_end = self.token2id["<end>"]
+
+        self.train_input = self.tensorize(train_sequences)
+        self.test_input = self.tensorize(test_sequences)
+
+        if no_prog:
+            # Excise the program from every train and test example
+            k = torch.arange(self.train_input.size(1), device=self.train_input.device)[
+                None, :
+            ]
+            p = (
+                ((self.train_input == self.t_prog).long() * k)
+                .max(1, keepdim=True)
+                .values
+            )
+            self.train_input = (
+                self.train_input * (k <= p).long()
+                + self.t_end * (k == p + 1).long()
+                + self.t_nul * (k > p + 1).long()
+            )
+            k = torch.arange(self.test_input.size(1), device=self.test_input.device)[
+                None, :
+            ]
+            p = (
+                ((self.test_input == self.t_prog).long() * k)
+                .max(1, keepdim=True)
+                .values
+            )
+            self.test_input = (
+                self.test_input * (k <= p).long()
+                + self.t_end * (k == p + 1).long()
+                + self.t_nul * (k > p + 1).long()
+            )
+
+        if logger is not None:
+            logger(f"value_max {val_max}")
+            for x in self.train_input[:25]:
+                end = (x != self.t_nul).nonzero().max().item() + 1
+                seq = [self.id2token[i.item()] for i in x[:end]]
+                s = " ".join(seq)
+                logger(f"example_seq {s}")
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            last = (batch != self.t_nul).max(0).values.nonzero().max() + 3
+            batch = batch[:, :last].to(self.device)
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis
+    ):
+        # --------------------------------------------------------------------
+        def compute_nb_errors_prog(input, nb_to_log=0):
+            result = input.clone()
+            s = (result == self.t_prog).long()
+            ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
+            result = (1 - ar_mask) * result + ar_mask * self.t_nul
+
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
+
+            sum_nb_total, sum_nb_errors = 0, 0
+            for one_input, one_result in zip(input, result):
+                seq = [self.id2token[i.item()] for i in one_result]
+                nb_total, nb_errors, prog, stacks = rpl.compute_nb_errors(seq)
+                sum_nb_total += 1
+                sum_nb_errors += 0 if nb_errors == 0 else 1
+                if nb_to_log > 0:
+                    gt_seq = [self.id2token[i.item()] for i in one_input]
+                    _, _, gt_prog, _ = rpl.compute_nb_errors(gt_seq)
+                    gt_prog = " ".join([str(x) for x in gt_prog])
+                    prog = " ".join([str(x) for x in prog])
+                    comment = "*" if nb_errors == 0 else "-"
+                    logger(f"{comment} PROG [{gt_prog}] PREDICTED [{prog}]")
+                    for start_stack, target_stack, result_stack, correct in stacks:
+                        comment = "*" if correct else "-"
+                        start_stack = " ".join([str(x) for x in start_stack])
+                        target_stack = " ".join([str(x) for x in target_stack])
+                        result_stack = " ".join([str(x) for x in result_stack])
+                        logger(
+                            f"  {comment} [{start_stack}] -> [{target_stack}] PREDICTED [{result_stack}]"
+                        )
+                    nb_to_log -= 1
+
+            return sum_nb_total, sum_nb_errors
+
+        # --------------------------------------------------------------------
+        def compute_nb_errors_output(input, nb_to_log=0):
+            result = input.clone()
+            k = torch.arange(result.size(1), device=result.device)[None, :]
+            last_output_idx = (
+                ((result == self.t_output) * k).max(dim=1, keepdim=True).values
+            )
+            first_prog_idx = (
+                ((result == self.t_prog) * k).max(dim=1, keepdim=True).values
+            )
+            ar_mask = (k > last_output_idx).long() * (k < first_prog_idx).long()
+            result = (1 - ar_mask) * result + ar_mask * self.t_nul
+
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
+
+            sum_nb_total, sum_nb_errors = 0, 0
+            for one_input, one_result, i, j in zip(
+                input, result, last_output_idx, first_prog_idx
+            ):
+                seq = [self.id2token[i.item()] for i in one_result]
+                sum_nb_total += 1
+                correct = (one_input - one_result).abs().max() == 0
+                sum_nb_errors += 0 if correct else 1
+                if nb_to_log > 0:
+                    result_stack = [
+                        self.id2token[i.item()] for i in one_result[i : j + 1]
+                    ]
+                    target_stack = [
+                        self.id2token[i.item()] for i in one_input[i : j + 1]
+                    ]
+                    comment = "*" if correct else "-"
+                    result_stack = " ".join([str(x) for x in result_stack])
+                    target_stack = " ".join([str(x) for x in target_stack])
+                    logger(
+                        f"output_test {comment} [{target_stack}] PREDICTED [{result_stack}]"
+                    )
+                    nb_to_log -= 1
+
+            return sum_nb_total, sum_nb_errors
+
+        # --------------------------------------------------------------------
+
+        if not self.no_prog:
+            test_nb_total, test_nb_errors = compute_nb_errors_prog(
+                self.test_input[:1000].to(self.device), nb_to_log=10
+            )
+
+            logger(
+                f"accuracy_prog_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%"
+            )
+
+            logger(f"main_test_accuracy {n_epoch} {1-test_nb_errors/test_nb_total}")
+
+        test_nb_total, test_nb_errors = compute_nb_errors_output(
+            self.test_input[:1000].to(self.device), nb_to_log=10
+        )
+
+        logger(
+            f"accuracy_output_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%"
+        )
+
+        if save_attention_image is None:
+            logger("no save_attention_image (is pycairo installed?)")
+        else:
+            ns = torch.randint(self.test_input.size(0), (1,)).item()
+            input = self.test_input[ns : ns + 1].clone()
+            last = (input != self.t_nul).max(0).values.nonzero().max() + 3
+            input = input[:, :last].to(self.device)
+
+            with torch.autograd.no_grad():
+                t = model.training
+                model.eval()
+                model.record_attention(True)
+                model(BracketedSequence(input))
+                model.train(t)
+                ram = model.retrieve_attention()
+                model.record_attention(False)
+
+            tokens_output = [self.id2token[i.item()] for i in input[0]]
+            tokens_input = ["n/a"] + tokens_output[:-1]
+            for n_head in range(ram[0].size(1)):
+                filename = os.path.join(
+                    result_dir, f"rpl_attention_{n_epoch}_h{n_head}.pdf"
+                )
+                attention_matrices = [m[0, n_head] for m in ram]
+                save_attention_image(
+                    filename,
+                    tokens_input,
+                    tokens_output,
+                    attention_matrices,
+                    k_top=10,
+                    # min_total_attention=0.9,
+                    token_gap=12,
+                    layer_gap=50,
+                )
+                logger(f"wrote {filename}")
+
+
 ######################################################################
 
 
@@ -780,6 +1255,8 @@ class Expr(Task):
         batch_size,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.device = device
 
@@ -899,6 +1376,8 @@ class Expr(Task):
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
         nb_total = test_nb_delta.sum() + test_nb_missed
         for d in range(test_nb_delta.size(0)):
             logger(
@@ -944,46 +1423,196 @@ class Expr(Task):
 
 
 ######################################################################
-import world
+
+import grid
 
 
-class World(Task):
+class Grid(Task):
+    # Make a tensor from a list of strings
+    def str2tensor(self, descr):
+        token_descr = [s.strip().split(" ") for s in descr]
+        l = max([len(s) for s in token_descr])
+        token_descr = [s + ["#"] * (l - len(s)) for s in token_descr]
+        id_descr = [[self.token2id[u] for u in s] for s in token_descr]
+        return torch.tensor(id_descr, device=self.device)
+
+    # Make a list of strings from a tensor
+    def tensor2str(self, x):
+        return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
+
+    # trim all the tensors in the tuple z to remove as much token from
+    # left and right in the first tensor. If z is a tuple, all its
+    # elements are trimed according to the triming for the first
+    def trim(self, z, token="#"):
+        n = self.token2id[token]
+        if type(z) == tuple:
+            x = z[0]
+            i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
+            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
+            return tuple([t[:, a:b] for t in z])
+        else:
+            i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
+            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
+            return z[:, a:b]
+
+    ######################
+
     def __init__(
         self,
         nb_train_samples,
         nb_test_samples,
         batch_size,
+        size,
+        logger=None,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
+        self.device = device
         self.batch_size = batch_size
+        self.grid_factory = grid.GridFactory(size=size)
+
+        if logger is not None:
+            logger(
+                f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
+            )
+
+        self.train_descr = self.grid_factory.generate_samples(
+            nb_train_samples, lambda r: tqdm.tqdm(r)
+        )
+        self.test_descr = self.grid_factory.generate_samples(
+            nb_test_samples, lambda r: tqdm.tqdm(r)
+        )
+
+        # Build the tokenizer
+        tokens = set()
+        for d in [self.train_descr, self.test_descr]:
+            for s in d:
+                for t in s.strip().split(" "):
+                    tokens.add(t)
+        # make this set a sorted list to get the same tensors given
+        # the same descr
+        tokens = list(tokens)
+        tokens.sort()
+        tokens = ["#"] + tokens
+        self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
+        self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
+        self.t_nul = self.token2id["#"]
+        self.t_true = self.token2id["true"]
+        self.t_false = self.token2id["false"]
+
+        # Tokenize the train and test sets
+        self.train_input = self.str2tensor(self.train_descr)
+        self.test_input = self.str2tensor(self.test_descr)
+
+    def batches(self, split="train"):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
+        ):
+            yield self.trim(batch)
+
+    def vocabulary_size(self):
+        return len(self.token2id)
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis
+    ):
+        correct = self.test_input[:1000]
+        result = correct.clone()
+        ar_mask = torch.logical_or(result == self.t_true, result == self.t_false).long()
+        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
+
+        logger(f"----------------------------------------------------------")
+
+        for e in self.tensor2str(result[:10]):
+            logger(f"test_before {e}")
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        logger(f"----------------------------------------------------------")
+
+        for e in self.tensor2str(result[:10]):
+            logger(f"test_after  {e}")
+
+        logger(f"----------------------------------------------------------")
+
+        nb_total = ar_mask.sum().item()
+        nb_correct = ((correct == result).long() * ar_mask).sum().item()
+
+        logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}")
+        logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}")
+
+
+######################################################################
+
+import qmlp
+
+
+class QMLP(Task):
+    ######################
+
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        result_dir,
+        logger=None,
+        device=torch.device("cpu"),
+    ):
+        super().__init__()
+
         self.device = device
+        self.batch_size = batch_size
+        self.nb_samples_per_mlp = 256
 
-        (
-            self.train_input,
-            self.train_actions,
-            self.test_input,
-            self.test_actions,
-            self.frame2seq,
-            self.seq2frame,
-        ) = world.create_data_and_processors(
-            nb_train_samples,
-            nb_test_samples,
-            mode="first_last",
-            nb_steps=30,
-            nb_epochs=2,
+        if logger is not None:
+            logger(
+                f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
+            )
+
+        seq, q_test_set, test_error = qmlp.generate_sequence_and_test_set(
+            nb_mlps=nb_train_samples + nb_test_samples,
+            nb_samples=self.nb_samples_per_mlp,
+            device=self.device,
+            batch_size=64,
+            nb_epochs=250,
+            nb_mlps_per_batch=1024,
         )
 
+        self.train_input = seq[:nb_train_samples]
+        self.train_q_test_set = q_test_set[:nb_train_samples]
+        self.train_ref_test_errors = test_error[:nb_train_samples]
+        self.test_input = seq[nb_train_samples:]
+        self.test_q_test_set = q_test_set[nb_train_samples:]
+        self.test_ref_test_errors = test_error[nb_train_samples:]
+
+        filename = os.path.join(result_dir, f"train_errors_ref.dat")
+        with open(filename, "w") as f:
+            for e in self.train_ref_test_errors:
+                f.write(f"{e}\n")
+
+        filename = os.path.join(result_dir, f"test_errors_ref.dat")
+        with open(filename, "w") as f:
+            for e in self.test_ref_test_errors:
+                f.write(f"{e}\n")
+
         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
 
-    def batches(self, split="train", nb_to_use=-1, desc=None):
+    def batches(self, split="train"):
         assert split in {"train", "test"}
         input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
         for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
         ):
             yield batch
 
@@ -993,7 +1622,32 @@ class World(Task):
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis
     ):
-        pass
+        correct = self.test_input[:1000]
+        result = correct.clone()
+        ar_mask = (
+            torch.arange(result.size(1), device=result.device)
+            > self.nb_samples_per_mlp * 3 + 1
+        ).long()[None, :]
+        ar_mask = ar_mask.expand_as(result)
+        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        q_train_set = result[:, : self.nb_samples_per_mlp * 3]
+        q_params = result[:, self.nb_samples_per_mlp * 3 + 1 :]
+        error_test = qmlp.evaluate_q_params(q_params, self.test_q_test_set)
+
+        filename = os.path.join(result_dir, f"test_errors_{n_epoch:04d}.dat")
+        with open(filename, "w") as f:
+            for e in error_test:
+                f.write(f"{e}\n")
 
 
 ######################################################################