Oups
[picoclvr.git] / world.py
index e76c07f..d95bddb 100755 (executable)
--- a/world.py
+++ b/world.py
@@ -1,6 +1,11 @@
 #!/usr/bin/env python
 
-import math
+# Any copyright is dedicated to the Public Domain.
+# https://creativecommons.org/publicdomain/zero/1.0/
+
+# Written by Francois Fleuret <francois@fleuret.org>
+
+import math, sys, tqdm
 
 import torch, torchvision
 
@@ -8,8 +13,12 @@ from torch import nn
 from torch.nn import functional as F
 import cairo
 
+######################################################################
+
 
 class Box:
+    nb_rgb_levels = 10
+
     def __init__(self, x, y, w, h, r, g, b):
         self.x = x
         self.y = y
@@ -30,7 +39,189 @@ class Box:
         return False
 
 
-def scene2tensor(xh, yh, scene, size=64):
+######################################################################
+
+
+class Normalizer(nn.Module):
+    def __init__(self, mu, std):
+        super().__init__()
+        self.register_buffer("mu", mu)
+        self.register_buffer("log_var", 2 * torch.log(std))
+
+    def forward(self, x):
+        return (x - self.mu) / torch.exp(self.log_var / 2.0)
+
+
+class SignSTE(nn.Module):
+    def __init__(self):
+        super().__init__()
+
+    def forward(self, x):
+        # torch.sign() takes three values
+        s = (x >= 0).float() * 2 - 1
+
+        if self.training:
+            u = torch.tanh(x)
+            return s + u - u.detach()
+        else:
+            return s
+
+
+class DiscreteSampler2d(nn.Module):
+    def __init__(self):
+        super().__init__()
+
+    def forward(self, x):
+        s = (x >= x.max(-3, keepdim=True).values).float()
+
+        if self.training:
+            u = x.softmax(dim=-3)
+            return s + u - u.detach()
+        else:
+            return s
+
+
+def loss_H(binary_logits, h_threshold=1):
+    p = binary_logits.sigmoid().mean(0)
+    h = (-p.xlogy(p) - (1 - p).xlogy(1 - p)) / math.log(2)
+    h.clamp_(max=h_threshold)
+    return h_threshold - h.mean()
+
+
+def train_encoder(
+    train_input,
+    test_input,
+    depth,
+    nb_bits_per_token,
+    dim_hidden=48,
+    lambda_entropy=0.0,
+    lr_start=1e-3,
+    lr_end=1e-4,
+    nb_epochs=10,
+    batch_size=25,
+    logger=None,
+    device=torch.device("cpu"),
+):
+    mu, std = train_input.float().mean(), train_input.float().std()
+
+    def encoder_core(depth, dim):
+        l = [
+            [
+                nn.Conv2d(
+                    dim * 2**k, dim * 2**k, kernel_size=5, stride=1, padding=2
+                ),
+                nn.ReLU(),
+                nn.Conv2d(dim * 2**k, dim * 2 ** (k + 1), kernel_size=2, stride=2),
+                nn.ReLU(),
+            ]
+            for k in range(depth)
+        ]
+
+        return nn.Sequential(*[x for m in l for x in m])
+
+    def decoder_core(depth, dim):
+        l = [
+            [
+                nn.ConvTranspose2d(
+                    dim * 2 ** (k + 1), dim * 2**k, kernel_size=2, stride=2
+                ),
+                nn.ReLU(),
+                nn.ConvTranspose2d(
+                    dim * 2**k, dim * 2**k, kernel_size=5, stride=1, padding=2
+                ),
+                nn.ReLU(),
+            ]
+            for k in range(depth - 1, -1, -1)
+        ]
+
+        return nn.Sequential(*[x for m in l for x in m])
+
+    encoder = nn.Sequential(
+        Normalizer(mu, std),
+        nn.Conv2d(3, dim_hidden, kernel_size=1, stride=1),
+        nn.ReLU(),
+        # 64x64
+        encoder_core(depth=depth, dim=dim_hidden),
+        # 8x8
+        nn.Conv2d(dim_hidden * 2**depth, nb_bits_per_token, kernel_size=1, stride=1),
+    )
+
+    quantizer = SignSTE()
+
+    decoder = nn.Sequential(
+        nn.Conv2d(nb_bits_per_token, dim_hidden * 2**depth, kernel_size=1, stride=1),
+        # 8x8
+        decoder_core(depth=depth, dim=dim_hidden),
+        # 64x64
+        nn.ConvTranspose2d(dim_hidden, 3 * Box.nb_rgb_levels, kernel_size=1, stride=1),
+    )
+
+    model = nn.Sequential(encoder, decoder)
+
+    nb_parameters = sum(p.numel() for p in model.parameters())
+
+    logger(f"vqae nb_parameters {nb_parameters}")
+
+    model.to(device)
+
+    for k in range(nb_epochs):
+        lr = math.exp(
+            math.log(lr_start) + math.log(lr_end / lr_start) / (nb_epochs - 1) * k
+        )
+        optimizer = torch.optim.Adam(model.parameters(), lr=lr)
+
+        acc_train_loss = 0.0
+
+        for input in tqdm.tqdm(train_input.split(batch_size), desc="vqae-train"):
+            input = input.to(device)
+            z = encoder(input)
+            zq = quantizer(z)
+            output = decoder(zq)
+
+            output = output.reshape(
+                output.size(0), -1, 3, output.size(2), output.size(3)
+            )
+
+            train_loss = F.cross_entropy(output, input)
+
+            if lambda_entropy > 0:
+                train_loss = train_loss + lambda_entropy * loss_H(z, h_threshold=0.5)
+
+            acc_train_loss += train_loss.item() * input.size(0)
+
+            optimizer.zero_grad()
+            train_loss.backward()
+            optimizer.step()
+
+        acc_test_loss = 0.0
+
+        for input in tqdm.tqdm(test_input.split(batch_size), desc="vqae-test"):
+            input = input.to(device)
+            z = encoder(input)
+            zq = quantizer(z)
+            output = decoder(zq)
+
+            output = output.reshape(
+                output.size(0), -1, 3, output.size(2), output.size(3)
+            )
+
+            test_loss = F.cross_entropy(output, input)
+
+            acc_test_loss += test_loss.item() * input.size(0)
+
+        train_loss = acc_train_loss / train_input.size(0)
+        test_loss = acc_test_loss / test_input.size(0)
+
+        logger(f"vqae train {k} lr {lr} train_loss {train_loss} test_loss {test_loss}")
+        sys.stdout.flush()
+
+    return encoder, quantizer, decoder
+
+
+######################################################################
+
+
+def scene2tensor(xh, yh, scene, size):
     width, height = size, size
     pixel_map = torch.ByteTensor(width, height, 4).fill_(255)
     data = pixel_map.numpy()
@@ -47,7 +238,12 @@ def scene2tensor(xh, yh, scene, size=64):
         ctx.rel_line_to(0, b.h * size)
         ctx.rel_line_to(-b.w * size, 0)
         ctx.close_path()
-        ctx.set_source_rgba(b.r, b.g, b.b, 1.0)
+        ctx.set_source_rgba(
+            b.r / (Box.nb_rgb_levels - 1),
+            b.g / (Box.nb_rgb_levels - 1),
+            b.b / (Box.nb_rgb_levels - 1),
+            1.0,
+        )
         ctx.fill()
 
     hs = size * 0.1
@@ -59,20 +255,31 @@ def scene2tensor(xh, yh, scene, size=64):
     ctx.close_path()
     ctx.fill()
 
-    return pixel_map[None, :, :, :3].flip(-1).permute(0, 3, 1, 2).float() / 255
+    return (
+        pixel_map[None, :, :, :3]
+        .flip(-1)
+        .permute(0, 3, 1, 2)
+        .long()
+        .mul(Box.nb_rgb_levels)
+        .floor_divide(256)
+    )
 
 
-def random_scene():
+def random_scene(nb_insert_attempts=3):
     scene = []
     colors = [
-        (1.00, 0.00, 0.00),
-        (0.00, 1.00, 0.00),
-        (0.60, 0.60, 1.00),
-        (1.00, 1.00, 0.00),
-        (0.75, 0.75, 0.75),
+        ((Box.nb_rgb_levels - 1), 0, 0),
+        (0, (Box.nb_rgb_levels - 1), 0),
+        (0, 0, (Box.nb_rgb_levels - 1)),
+        ((Box.nb_rgb_levels - 1), (Box.nb_rgb_levels - 1), 0),
+        (
+            (Box.nb_rgb_levels * 2) // 3,
+            (Box.nb_rgb_levels * 2) // 3,
+            (Box.nb_rgb_levels * 2) // 3,
+        ),
     ]
 
-    for k in range(10):
+    for k in range(nb_insert_attempts):
         wh = torch.rand(2) * 0.2 + 0.2
         xy = torch.rand(2) * (1 - wh)
         c = colors[torch.randint(len(colors), (1,))]
@@ -85,7 +292,7 @@ def random_scene():
     return scene
 
 
-def sequence(nb_steps=10, all_frames=False):
+def generate_episode(steps, size=64):
     delta = 0.1
     effects = [
         (False, 0, 0),
@@ -105,14 +312,16 @@ def sequence(nb_steps=10, all_frames=False):
         scene = random_scene()
         xh, yh = tuple(x.item() for x in torch.rand(2))
 
-        frames.append(scene2tensor(xh, yh, scene))
+        actions = torch.randint(len(effects), (len(steps),))
+        nb_changes = 0
 
-        actions = torch.randint(len(effects), (nb_steps,))
-        change = False
+        for s, a in zip(steps, actions):
+            if s:
+                frames.append(scene2tensor(xh, yh, scene, size=size))
 
-        for a in actions:
-            g, dx, dy = effects[a]
-            if g:
+            grasp, dx, dy = effects[a]
+
+            if grasp:
                 for b in scene:
                     if b.x <= xh and b.x + b.w >= xh and b.y <= yh and b.y + b.h >= yh:
                         x, y = b.x, b.y
@@ -129,7 +338,7 @@ def sequence(nb_steps=10, all_frames=False):
                         else:
                             xh += dx
                             yh += dy
-                            change = True
+                            nb_changes += 1
             else:
                 x, y = xh, yh
                 xh += dx
@@ -137,13 +346,7 @@ def sequence(nb_steps=10, all_frames=False):
                 if xh < 0 or xh > 1 or yh < 0 or yh > 1:
                     xh, yh = x, y
 
-            if all_frames:
-                frames.append(scene2tensor(xh, yh, scene))
-
-        if not all_frames:
-            frames.append(scene2tensor(xh, yh, scene))
-
-        if change:
+        if nb_changes > len(steps) // 3:
             break
 
     return frames, actions
@@ -152,177 +355,131 @@ def sequence(nb_steps=10, all_frames=False):
 ######################################################################
 
 
-# ||x_i - c_j||^2 = ||x_i||^2 + ||c_j||^2 - 2<x_i, c_j>
-def sq2matrix(x, c):
-    nx = x.pow(2).sum(1)
-    nc = c.pow(2).sum(1)
-    return nx[:, None] + nc[None, :] - 2 * x @ c.t()
-
-
-def update_centroids(x, c, nb_min=1):
-    _, b = sq2matrix(x, c).min(1)
-    b.squeeze_()
-    nb_resets = 0
-
-    for k in range(0, c.size(0)):
-        i = b.eq(k).nonzero(as_tuple=False).squeeze()
-        if i.numel() >= nb_min:
-            c[k] = x.index_select(0, i).mean(0)
-        else:
-            n = torch.randint(x.size(0), (1,))
-            nb_resets += 1
-            c[k] = x[n]
-
-    return c, b, nb_resets
-
-
-def kmeans(x, nb_centroids, nb_min=1):
-    if x.size(0) < nb_centroids * nb_min:
-        print("Not enough points!")
-        exit(1)
-
-    c = x[torch.randperm(x.size(0))[:nb_centroids]]
-    t = torch.full((x.size(0),), -1)
-    n = 0
-
-    while True:
-        c, u, nb_resets = update_centroids(x, c, nb_min)
-        n = n + 1
-        nb_changes = (u - t).sign().abs().sum() + nb_resets
-        t = u
-        if nb_changes == 0:
-            break
-
-    return c, t
-
-
-######################################################################
-
-
-def patchify(x, factor, invert_size=None):
-    if invert_size is None:
-        return (
-            x.reshape(
-                x.size(0),  # 0
-                x.size(1),  # 1
-                factor,  # 2
-                x.size(2) // factor,  # 3
-                factor,  # 4
-                x.size(3) // factor,  # 5
-            )
-            .permute(0, 2, 4, 1, 3, 5)
-            .reshape(-1, x.size(1), x.size(2) // factor, x.size(3) // factor)
-        )
-    else:
-        return (
-            x.reshape(
-                invert_size[0],  # 0
-                factor,  # 1
-                factor,  # 2
-                invert_size[1],  # 3
-                invert_size[2] // factor,  # 4
-                invert_size[3] // factor,  # 5
-            )
-            .permute(0, 3, 1, 4, 2, 5)
-            .reshape(invert_size)
-        )
-
-
-def train_encoder(input, device=torch.device("cpu")):
-    class SomeLeNet(nn.Module):
-        def __init__(self):
-            super().__init__()
-            self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
-            self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
-            self.fc1 = nn.Linear(256, 200)
-            self.fc2 = nn.Linear(200, 10)
-
-        def forward(self, x):
-            x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=3))
-            x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=2))
-            x = x.view(x.size(0), -1)
-            x = F.relu(self.fc1(x))
-            x = self.fc2(x)
-            return x
-
-    ######################################################################
-
-    model = SomeLeNet()
-
-    nb_parameters = sum(p.numel() for p in model.parameters())
-
-    print(f"nb_parameters {nb_parameters}")
-
-    optimizer = torch.optim.SGD(model.parameters(), lr=lr)
-    criterion = nn.CrossEntropyLoss()
-
-    model.to(device)
-    criterion.to(device)
-
-    train_input, train_targets = train_input.to(device), train_targets.to(device)
-    test_input, test_targets = test_input.to(device), test_targets.to(device)
-
-    mu, std = train_input.mean(), train_input.std()
-    train_input.sub_(mu).div_(std)
-    test_input.sub_(mu).div_(std)
-
-    start_time = time.perf_counter()
-
-    for k in range(nb_epochs):
-        acc_loss = 0.0
+def generate_episodes(nb, steps):
+    all_frames, all_actions = [], []
+    for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world-data"):
+        frames, actions = generate_episode(steps)
+        all_frames += frames
+        all_actions += [actions[None, :]]
+    return torch.cat(all_frames, 0).contiguous(), torch.cat(all_actions, 0)
+
+
+def create_data_and_processors(
+    nb_train_samples,
+    nb_test_samples,
+    mode,
+    nb_steps,
+    depth=3,
+    nb_bits_per_token=8,
+    nb_epochs=10,
+    device=torch.device("cpu"),
+    device_storage=torch.device("cpu"),
+    logger=None,
+):
+    assert mode in ["first_last"]
+
+    if mode == "first_last":
+        steps = [True] + [False] * (nb_steps + 1) + [True]
+
+    if logger is None:
+        logger = lambda s: print(s)
+
+    train_input, train_actions = generate_episodes(nb_train_samples, steps)
+    train_input, train_actions = train_input.to(device_storage), train_actions.to(
+        device_storage
+    )
+    test_input, test_actions = generate_episodes(nb_test_samples, steps)
+    test_input, test_actions = test_input.to(device_storage), test_actions.to(
+        device_storage
+    )
 
-        for input, targets in zip(
-            train_input.split(batch_size), train_targets.split(batch_size)
-        ):
-            output = model(input)
-            loss = criterion(output, targets)
-            acc_loss += loss.item()
+    encoder, quantizer, decoder = train_encoder(
+        train_input,
+        test_input,
+        depth=depth,
+        nb_bits_per_token=nb_bits_per_token,
+        lambda_entropy=1.0,
+        nb_epochs=nb_epochs,
+        logger=logger,
+        device=device,
+    )
+    encoder.train(False)
+    quantizer.train(False)
+    decoder.train(False)
+
+    z = encoder(train_input[:1].to(device))
+    pow2 = (2 ** torch.arange(z.size(1), device=device))[None, None, :]
+    z_h, z_w = z.size(2), z.size(3)
+
+    logger(f"vqae input {train_input[0].size()} output {z[0].size()}")
+
+    def frame2seq(input, batch_size=25):
+        seq = []
+        p = pow2.to(device)
+        for x in input.split(batch_size):
+            x = x.to(device)
+            z = encoder(x)
+            ze_bool = (quantizer(z) >= 0).long()
+            output = (
+                ze_bool.permute(0, 2, 3, 1).reshape(
+                    ze_bool.size(0), -1, ze_bool.size(1)
+                )
+                * p
+            ).sum(-1)
+
+            seq.append(output)
+
+        return torch.cat(seq, dim=0)
+
+    def seq2frame(input, batch_size=25, T=1e-2):
+        frames = []
+        p = pow2.to(device)
+        for seq in input.split(batch_size):
+            seq = seq.to(device)
+            zd_bool = (seq[:, :, None] // p) % 2
+            zd_bool = zd_bool.reshape(zd_bool.size(0), z_h, z_w, -1).permute(0, 3, 1, 2)
+            logits = decoder(zd_bool * 2.0 - 1.0)
+            logits = logits.reshape(
+                logits.size(0), -1, 3, logits.size(2), logits.size(3)
+            ).permute(0, 2, 3, 4, 1)
+            output = torch.distributions.categorical.Categorical(
+                logits=logits / T
+            ).sample()
 
-            optimizer.zero_grad()
-            loss.backward()
-            optimizer.step()
+            frames.append(output)
 
-        nb_test_errors = 0
-        for input, targets in zip(
-            test_input.split(batch_size), test_targets.split(batch_size)
-        ):
-            wta = model(input).argmax(1)
-            nb_test_errors += (wta != targets).long().sum()
-        test_error = nb_test_errors / test_input.size(0)
-        duration = time.perf_counter() - start_time
+        return torch.cat(frames, dim=0)
 
-        print(f"loss {k} {duration:.02f}s {acc_loss:.02f} {test_error*100:.02f}%")
+    return train_input, train_actions, test_input, test_actions, frame2seq, seq2frame
 
 
 ######################################################################
 
 if __name__ == "__main__":
-    import time
-
-    all_frames = []
-    nb = 1000
-    start_time = time.perf_counter()
-    for n in range(nb):
-        frames, actions = sequence(nb_steps=31)
-        all_frames += frames
-    end_time = time.perf_counter()
-    print(f"{nb / (end_time - start_time):.02f} samples per second")
-
-    input = torch.cat(all_frames, 0)
+    (
+        train_input,
+        train_actions,
+        test_input,
+        test_actions,
+        frame2seq,
+        seq2frame,
+    ) = create_data_and_processors(
+        250,
+        1000,
+        nb_epochs=5,
+        mode="first_last",
+        nb_steps=20,
+    )
 
-    # x = patchify(input, 8)
-    # y = x.reshape(x.size(0), -1)
-    # print(f"{x.size()=} {y.size()=}")
-    # centroids, t = kmeans(y, 4096)
-    # results = centroids[t]
-    # results = results.reshape(x.size())
-    # results = patchify(results, 8, input.size())
+    input = test_input[:256]
 
-    print(f"{input.size()=} {results.size()=}")
+    seq = frame2seq(input)
+    output = seq2frame(seq)
 
-    torchvision.utils.save_image(input[:64], "orig.png", nrow=8)
-    torchvision.utils.save_image(results[:64], "qtiz.png", nrow=8)
+    torchvision.utils.save_image(
+        input.float() / (Box.nb_rgb_levels - 1), "orig.png", nrow=16
+    )
 
-    # frames, actions = sequence(nb_steps=31, all_frames=True)
-    # frames = torch.cat(frames, 0)
-    # torchvision.utils.save_image(frames, "seq.png", nrow=8)
+    torchvision.utils.save_image(
+        output.float() / (Box.nb_rgb_levels - 1), "qtiz.png", nrow=16
+    )