X-Git-Url: https://www.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=beaver.py;h=5abe39b767c13299d8dcffcc3369682bfbfff69f;hb=HEAD;hp=920a446f920e6cd2beb67ac0df96457bfac55225;hpb=61cd7a140e44ccb966bad941fa31e395e51e50e2;p=beaver.git diff --git a/beaver.py b/beaver.py index 920a446..5abe39b 100755 --- a/beaver.py +++ b/beaver.py @@ -26,9 +26,7 @@ else: ###################################################################### -parser = argparse.ArgumentParser( - description="An implementation of GPT with cache to solve a toy geometric reasoning task." -) +parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.") parser.add_argument("--log_filename", type=str, default="train.log") @@ -66,6 +64,10 @@ parser.add_argument("--dropout", type=float, default=0.1) parser.add_argument("--deterministic_synthesis", action="store_true", default=False) +parser.add_argument("--random_regression_order", action="store_true", default=False) + +parser.add_argument("--noncausal_prompt", action="store_true", default=False) + parser.add_argument("--no_checkpoint", action="store_true", default=False) parser.add_argument("--overwrite_results", action="store_true", default=False) @@ -75,11 +77,20 @@ parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth") ############################## # maze options -parser.add_argument("--world_height", type=int, default=13) +parser.add_argument("--maze_height", type=int, default=13) -parser.add_argument("--world_width", type=int, default=21) +parser.add_argument("--maze_width", type=int, default=21) + +parser.add_argument("--maze_nb_walls", type=int, default=15) + +############################## +# one-shot prediction -parser.add_argument("--world_nb_walls", type=int, default=15) +parser.add_argument("--oneshot", action="store_true", default=False) + +parser.add_argument("--oneshot_input", type=str, default="head") + +parser.add_argument("--oneshot_output", type=str, default="trace") ###################################################################### @@ -116,26 +127,59 @@ def log_string(s): sys.stdout.flush() +log_string(f"cmd {' '.join(sys.argv)}") + for n in vars(args): log_string(f"args.{n} {getattr(args, n)}") ###################################################################### +def reorder(x, order, reverse=False): # x is NxTxD1x...xDk, order is NxT' + u = x.reshape(x.size()[:2] + (-1,)) + order = order.unsqueeze(-1).expand(-1, -1, u.size(-1)) + if reverse: + v = u.new(u.size()).scatter_(1, order, u) + else: + v = u.gather(1, order) + v = v.reshape(v.size()[:2] + x.size()[2:]) + return v + + +def shuffle(x, prompt_len): + if args.random_regression_order: + order = torch.rand(x.size(), device=x.device) + order[:, :prompt_len] = torch.arange(-prompt_len, 0, device=x.device) + order = order.sort(1).indices + else: + order = ( + torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1) + ) + return reorder(x, order), order + + +def eval_mygpt(model, input, mode="standard", prompt_len=0): + x, order = shuffle(input, prompt_len) + x = model(mygpt.BracketedSequence(x), mode=mode, order=order).x + return reorder(x, order, reverse=True) + + +###################################################################### + # ar_mask is a Boolean matrix of same shape as input, with 1s on the # tokens that should be generated -def masked_inplace_autoregression(model, batch_size, input, ar_mask): - - for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)): +def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None): + for input, ar_mask, order in zip( + input.split(batch_size), ar_mask.split(batch_size), order.split(batch_size) + ): i = (ar_mask.sum(0) > 0).nonzero() if i.min() > 0: - model( - mygpt.BracketedSequence(input, 0, i.min()) - ) # Needed to initialize the model's cache + # Needed to initialize the model's cache + model(mygpt.BracketedSequence(input, 0, i.min()), order=order) for s in range(i.min(), i.max() + 1): - output = model(mygpt.BracketedSequence(input, s, 1)).x + output = model(mygpt.BracketedSequence(input, s, 1), order=order).x logits = output[:, s] if args.deterministic_synthesis: t_next = logits.argmax(1) @@ -148,8 +192,262 @@ def masked_inplace_autoregression(model, batch_size, input, ar_mask): ###################################################################### +def compute_perplexity(model, task, prompt_len, split="train"): + with torch.autograd.no_grad(): + t = model.training + model.eval() + + nb_samples, acc_loss = 0, 0.0 + + for input in task.batches(split=split): + input = input.to(device) + output = eval_mygpt(model, input, prompt_len=prompt_len) + if args.noncausal_prompt: + d = input.size(1) // 2 + loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:]) + else: + loss = F.cross_entropy(output.transpose(1, 2), input) + acc_loss += loss.item() * input.size(0) + nb_samples += input.size(0) + + model.train(t) + + return math.exp(min(100, acc_loss / nb_samples)) + + +###################################################################### + + +def oneshot_policy_loss(mazes, output, policies, height, width): + masks = (mazes == maze.v_empty).unsqueeze(-1) + targets = policies.permute(0, 2, 1) * masks + output = output * masks + return -(output.log_softmax(-1) * targets).sum() / masks.sum() + + +def oneshot_trace_loss(mazes, output, policies, height, width): + masks = mazes == maze.v_empty + targets = maze.stationary_densities( + mazes.view(-1, height, width), policies.view(-1, 4, height, width) + ).flatten(-2) + targets = targets * masks + output = output.squeeze(-1) * masks + return (output - targets).abs().sum() / masks.sum() + + +def oneshot(model, learning_rate_scheduler, task): + t = model.training + model.eval() + mazes = task.test_input[:48].clone() + mazes[:, task.height * task.width :] = 0 + policies = task.test_policies[:48] + targets = maze.stationary_densities( + mazes[:, : task.height * task.width].view(-1, task.height, task.width), + policies.view(-1, 4, task.height, task.width), + ).flatten(-2) + output = eval_mygpt(model, mazes, prompt_len=task.height * task.width) + output = F.softmax(output, dim=2) + print(f"{output.size()=}") + proba_path = output[:, task.height * task.width :, 4].reshape( + -1, task.height, task.width + ) + mazes = mazes[:, : task.height * task.width].reshape(-1, task.height, task.width) + targets = targets.reshape(-1, task.height, task.width) + paths = task.test_input[:48, task.height * task.width :].reshape( + -1, task.height, task.width + ) + filename = f"oneshot.png" + maze.save_image( + os.path.join(args.result_dir, filename), + mazes=mazes, + # target_paths=paths, + score_paths=proba_path, + score_truth=targets, + ) + log_string(f"wrote {filename}") + + +def oneshot_old(gpt, learning_rate_scheduler, task): + t = gpt.training + gpt.eval() + + if args.oneshot_input == "head": + dim_in = args.dim_model + elif args.oneshot_input == "deep": + dim_in = args.dim_model * args.nb_blocks * 2 + else: + raise ValueError(f"{args.oneshot_input=}") + + if args.oneshot_output == "policy": + dim_out = 4 + compute_loss = oneshot_policy_loss + elif args.oneshot_output == "trace": + dim_out = 1 + compute_loss = oneshot_trace_loss + else: + raise ValueError(f"{args.oneshot_output=}") + + model = nn.Sequential( + nn.Linear(dim_in, args.dim_model), + nn.ReLU(), + nn.Linear(args.dim_model, args.dim_model), + nn.ReLU(), + nn.Linear(args.dim_model, dim_out), + ).to(device) + + learning_rate_scheduler.reset() + + for n_epoch in range(args.nb_epochs): + learning_rate = learning_rate_scheduler.get_learning_rate() + log_string(f"learning_rate {n_epoch} {learning_rate}") + + optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) + + acc_train_loss, nb_train_samples = 0, 0 + for mazes, policies in task.policy_batches(split="train"): + output_gpt = eval_mygpt( + gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width + ) + output = model(output_gpt) + + loss = compute_loss(mazes, output, policies, task.height, task.width) + acc_train_loss += loss.item() * mazes.size(0) + nb_train_samples += mazes.size(0) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + learning_rate_scheduler.update(n_epoch + 1, acc_train_loss) + + acc_test_loss, nb_test_samples = 0, 0 + for mazes, policies in task.policy_batches(split="test"): + output_gpt = eval_mygpt( + gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width + ) + output = model(output_gpt) + loss = compute_loss(mazes, output, policies, task.height, task.width) + acc_test_loss += loss.item() * mazes.size(0) + nb_test_samples += mazes.size(0) + + log_string( + f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}" + ) + + # ------------------- + mazes = task.test_input[:48, : task.height * task.width] + policies = task.test_policies[:48] + output_gpt = eval_mygpt( + gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width + ) + output = model(output_gpt) + if args.oneshot_output == "policy": + targets = policies.permute(0, 2, 1) + scores = ( + (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0 + ).float() + elif args.oneshot_output == "trace": + targets = maze.stationary_densities( + mazes.view(-1, task.height, task.width), + policies.view(-1, 4, task.height, task.width), + ).flatten(-2) + scores = output + else: + raise ValueError(f"{args.oneshot_output=}") + + scores = scores.reshape(-1, task.height, task.width) + mazes = mazes.reshape(-1, task.height, task.width) + targets = targets.reshape(-1, task.height, task.width) + filename = ( + f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png" + ) + maze.save_image( + os.path.join(args.result_dir, filename), + mazes=mazes, + score_paths=scores, + score_truth=targets, + ) + log_string(f"wrote {filename}") + + # ------------------- + + gpt.train(t) + + +###################################################################### + + +class LearningRateScheduler: + def get_learning_rate(self): + pass + + def update(self, nb_finished_epochs, loss): + pass + + def reset(self): + pass + + def get_state(self): + return vars(self) + + def set_state(self, state): + print(f"{state=}") + for k, v in state.items(): + setattr(self, k, v) + + +class StepWiseScheduler(LearningRateScheduler): + def __init__(self, schedule): + self.nb_finished_epochs = 0 + self.schedule = schedule + + def get_learning_rate(self): + return self.schedule[self.nb_finished_epochs] + + def update(self, nb_finished_epochs, loss): + self.nb_finished_epochs = nb_finished_epochs + + def reset(self): + self.nb_finished_epochs = 0 + + def get_state(self): + return {"nb_finished_epochs": self.nb_finished_epochs} + + +class AutoScheduler(LearningRateScheduler): + def __init__(self, learning_rate_init, growth=1.0, degrowth=0.2): + self.learning_rate_init = learning_rate_init + self.learning_rate = learning_rate_init + self.growth = growth + self.degrowth = degrowth + self.pred_loss = None + + def get_learning_rate(self): + return self.learning_rate + + def update(self, nb_finished_epochs, loss): + if self.pred_loss is not None: + if loss >= self.pred_loss: + self.learning_rate *= self.degrowth + else: + self.learning_rate *= self.growth + self.pred_loss = loss + + def reset(self): + self.learning_rate = self.learning_rate_init + + def get_state(self): + return { + "learning_rate_init": self.learning_rate_init, + "pred_loss": self.pred_loss, + } + + +###################################################################### + + class Task: - def batches(self, split="train"): + def batches(self, split="train", nb_to_use=-1, desc=None): pass def vocabulary_size(self): @@ -187,34 +485,57 @@ class TaskMaze(Task): self.width = width self.device = device - mazes_train, paths_train = maze.create_maze_data( + train_mazes, train_paths, train_policies = maze.create_maze_data( nb_train_samples, height=height, width=width, nb_walls=nb_walls, progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"), ) - mazes_train, paths_train = mazes_train.to(device), paths_train.to(device) - self.train_input = self.map2seq(mazes_train, paths_train) - self.nb_codes = self.train_input.max() + 1 + self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device)) + self.train_policies = train_policies.flatten(-2).to(device) - mazes_test, paths_test = maze.create_maze_data( + test_mazes, test_paths, test_policies = maze.create_maze_data( nb_test_samples, height=height, width=width, nb_walls=nb_walls, progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"), ) - mazes_test, paths_test = mazes_test.to(device), paths_test.to(device) - self.test_input = self.map2seq(mazes_test, paths_test) + self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device)) + self.test_policies = test_policies.flatten(-2).to(device) - def batches(self, split="train", nb_to_use=-1): + self.nb_codes = self.train_input.max() + 1 + + def batches(self, split="train", nb_to_use=-1, desc=None): assert split in {"train", "test"} input = self.train_input if split == "train" else self.test_input if nb_to_use > 0: input = input[:nb_to_use] + if desc is None: + desc = f"epoch-{split}" for batch in tqdm.tqdm( - input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}" + input.split(self.batch_size), dynamic_ncols=True, desc=desc + ): + yield batch + + def policy_batches(self, split="train", nb_to_use=-1, desc=None): + assert split in {"train", "test"} + input = self.train_input if split == "train" else self.test_input + policies = self.train_policies if split == "train" else self.test_policies + input = input[:, : self.height * self.width] + policies = policies * (input != maze.v_wall)[:, None] + + if nb_to_use > 0: + input = input[:nb_to_use] + policies = policies[:nb_to_use] + + if desc is None: + desc = f"epoch-{split}" + for batch in tqdm.tqdm( + zip(input.split(self.batch_size), policies.split(self.batch_size)), + dynamic_ncols=True, + desc=desc, ): yield batch @@ -227,7 +548,12 @@ class TaskMaze(Task): result = input.clone() ar_mask = result.new_zeros(result.size()) ar_mask[:, self.height * self.width :] = 1 - masked_inplace_autoregression(model, self.batch_size, result, ar_mask) + result *= 1 - ar_mask + x, order = shuffle(result, self.height * self.width) + masked_inplace_autoregression( + model, self.batch_size, x, ar_mask, order=order + ) + result = reorder(x, order, reverse=True) mazes, paths = self.seq2map(result) nb_correct += maze.path_correctness(mazes, paths).long().sum() nb_total += mazes.size(0) @@ -253,16 +579,28 @@ class TaskMaze(Task): f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) - input = self.test_input[:32] + input = self.test_input[:48] result = input.clone() ar_mask = result.new_zeros(result.size()) - ar_mask[:, self.height * self.width :] = 1 - masked_inplace_autoregression(model, self.batch_size, result, ar_mask) + result *= 1 - ar_mask + x, order = shuffle(result, self.height * self.width) + masked_inplace_autoregression( + model, self.batch_size, x, ar_mask, order=order + ) + result = reorder(x, order, reverse=True) mazes, paths = self.seq2map(input) _, predicted_paths = self.seq2map(result) - maze.save_image(f"result_{n_epoch:04d}.png", mazes, paths, predicted_paths) + filename = f"result_{n_epoch:04d}.png" + maze.save_image( + os.path.join(args.result_dir, filename), + mazes=mazes, + target_paths=paths, + predicted_paths=predicted_paths, + path_correct=maze.path_correctness(mazes, predicted_paths), + ) + log_string(f"wrote {filename}") model.train(t) @@ -276,9 +614,9 @@ task = TaskMaze( nb_train_samples=args.nb_train_samples, nb_test_samples=args.nb_test_samples, batch_size=args.batch_size, - height=args.world_height, - width=args.world_width, - nb_walls=args.world_nb_walls, + height=args.maze_height, + width=args.maze_width, + nb_walls=args.maze_nb_walls, device=device, ) @@ -289,6 +627,30 @@ log_string(f"vocabulary_size {vocabulary_size}") ############################## + +def noncausal_prompt_amm_generator(d): + q = torch.arange(d)[:, None] + k = torch.arange(d)[None, :] + s = args.maze_height * args.maze_width + return torch.logical_and(q < k, torch.logical_or(q >= s, k >= s)) + # return q < k + + +def noncausal_prompt_oneshot_amm_generator(d): + q = torch.arange(d)[:, None] + k = torch.arange(d)[None, :] + s = args.maze_height * args.maze_width + return k >= s + # return q < k + + +if args.oneshot: + amm_generator = noncausal_prompt_oneshot_amm_generator +elif args.noncausal_prompt: + amm_generator = noncausal_prompt_amm_generator +else: + amm_generator = None + model = mygpt.MyGPT( vocabulary_size=vocabulary_size, dim_model=args.dim_model, @@ -298,6 +660,7 @@ model = mygpt.MyGPT( nb_blocks=args.nb_blocks, causal=True, dropout=args.dropout, + amm_generator=amm_generator, ) model.to(device) @@ -307,6 +670,36 @@ log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)") ###################################################################### +if args.learning_rate_schedule == "auto": + learning_rate_scheduler = AutoScheduler(args.learning_rate) + +elif args.learning_rate_schedule == "cos": + schedule = {} + for n_epoch in range(args.nb_epochs): + u = n_epoch / args.nb_epochs * math.pi + schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u)) + learning_rate_scheduler = StepWiseScheduler(schedule) + log_string(f"learning_rate_schedule {schedule}") + +else: + u = { + int(k): float(v) + for k, v in [ + tuple(x.split(":")) for x in args.learning_rate_schedule.split(",") + ] + } + + schedule = {} + learning_rate = args.learning_rate + for n_epoch in range(args.nb_epochs): + if n_epoch in u: + learning_rate = u[n_epoch] + schedule[n_epoch] = learning_rate + learning_rate_scheduler = StepWiseScheduler(schedule) + log_string(f"learning_rate_schedule {schedule}") + +###################################################################### + nb_epochs_finished = 0 if args.no_checkpoint: @@ -318,6 +711,7 @@ else: checkpoint = torch.load(checkpoint_name) nb_epochs_finished = checkpoint["nb_epochs_finished"] model.load_state_dict(checkpoint["model_state"]) + learning_rate_scheduler.set_state(checkpoint["learning_rate_scheduler_state"]) torch.set_rng_state(checkpoint["rng_state"]) if torch.cuda.is_available(): torch.cuda.set_rng_state(checkpoint["cuda_rng_state"]) @@ -327,13 +721,17 @@ else: except FileNotFoundError: log_string("starting from scratch.") - except: - log_string("error when loading the checkpoint.") - exit(1) + # except: + # log_string("error when loading the checkpoint.") + # exit(1) ###################################################################### -nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default +if args.oneshot: + oneshot(model, learning_rate_scheduler, task) + exit(0) + +###################################################################### token_count = 0 for input in task.batches(split="train"): @@ -344,40 +742,28 @@ train_set_perplexity = math.exp(entropy) ############################## -if args.learning_rate_schedule == "cos": - learning_rate_schedule = {} - for n_epoch in range(args.nb_epochs): - u = n_epoch / args.nb_epochs * math.pi - learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u)) -else: - u = { - int(k): float(v) - for k, v in [ - tuple(x.split(":")) for x in args.learning_rate_schedule.split(",") - ] - } +if nb_epochs_finished >= args.nb_epochs: + n_epoch = nb_epochs_finished + train_perplexity = compute_perplexity( + model, task, prompt_len=task.height * task.width, split="train" + ) + test_perplexity = compute_perplexity( + model, task, prompt_len=task.height * task.width, split="test" + ) - learning_rate_schedule = {} - learning_rate = args.learning_rate - for n_epoch in range(args.nb_epochs): - if n_epoch in u: - learning_rate = u[n_epoch] - learning_rate_schedule[n_epoch] = learning_rate + log_string( + f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}" + ) -log_string(f"learning_rate_schedule {learning_rate_schedule}") + task.produce_results(n_epoch, model) ############################## -nb_samples_seen = 0 +learning_rate_scheduler.reset() -if nb_epochs_finished >= nb_epochs: - task.produce_results(nb_epochs_finished, model) - -for n_epoch in range(nb_epochs_finished, nb_epochs): - - learning_rate = learning_rate_schedule[n_epoch] - - log_string(f"learning_rate {learning_rate}") +for n_epoch in range(nb_epochs_finished, args.nb_epochs): + learning_rate = learning_rate_scheduler.get_learning_rate() + log_string(f"learning_rate {n_epoch} {learning_rate}") if args.optim == "sgd": optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) @@ -386,7 +772,7 @@ for n_epoch in range(nb_epochs_finished, nb_epochs): elif args.optim == "adamw": optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) else: - raise ValueError(f"Unknown optimizer {args.optim}.") + raise ValueError(f"{args.optim=}") model.train() @@ -394,45 +780,36 @@ for n_epoch in range(nb_epochs_finished, nb_epochs): for input in task.batches(split="train"): input = input.to(device) - output = model(mygpt.BracketedSequence(input)).x - loss = F.cross_entropy(output.transpose(1, 2), input) + output = eval_mygpt(model, input, prompt_len=task.height * task.width) + if args.noncausal_prompt: + d = input.size(1) // 2 + loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:]) + else: + loss = F.cross_entropy(output.transpose(1, 2), input) acc_train_loss += loss.item() * input.size(0) nb_train_samples += input.size(0) - nb_samples_seen += input.size(0) optimizer.zero_grad() loss.backward() optimizer.step() - with torch.autograd.no_grad(): - - model.eval() - - nb_test_samples, acc_test_loss = 0, 0.0 - - for input in task.batches(split="test"): - input = input.to(device) - - # input, loss_masks, true_images = task.excise_last_image(input) - # input, loss_masks = task.add_true_image(input, true_images, loss_masks) - - output = model(mygpt.BracketedSequence(input)).x - loss = F.cross_entropy(output.transpose(1, 2), input) - acc_test_loss += loss.item() * input.size(0) - nb_test_samples += input.size(0) + learning_rate_scheduler.update(n_epoch + 1, acc_train_loss) - train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples)) - test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples)) + train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples)) + test_perplexity = compute_perplexity( + model, task, prompt_len=task.height * task.width, split="test" + ) - log_string( - f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}" - ) + log_string( + f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}" + ) - task.produce_results(n_epoch, model) + task.produce_results(n_epoch, model) checkpoint = { "nb_epochs_finished": n_epoch + 1, "model_state": model.state_dict(), + "learning_rate_scheduler_state": learning_rate_scheduler.get_state(), "rng_state": torch.get_rng_state(), }