X-Git-Url: https://www.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=clusterer.cc;h=d4a70a6c5413ac6dd1a754501fe2b34499de6e4a;hb=379b91965f8d18b05cc40c4a14044eda29a6e82c;hp=04a9af4eb35f243effc4192897ce5e9a5373eedb;hpb=04d2b44ba34a811e1fab0b90d38ebd06cd918c52;p=clueless-kmeans.git diff --git a/clusterer.cc b/clusterer.cc index 04a9af4..d4a70a6 100644 --- a/clusterer.cc +++ b/clusterer.cc @@ -35,8 +35,6 @@ Clusterer::~Clusterer() { } scalar_t Clusterer::distance_to_centroid(scalar_t *x, int k) { - // We take the variance into account + the normalization term. This - // is between k-mean and EM with a diagonal covariance scalar_t dist = 0; for(int d = 0; d < _dim; d++) { dist += sq(_cluster_means[k][d] - x[d]) / (2 * _cluster_var[k][d]); @@ -97,9 +95,9 @@ scalar_t Clusterer::baseline_lp_cluster_association(int nb_points, scalar_t **po scalar_t **gamma) { glp_prob *lp; - int *ia = new int[nb_points * _nb_clusters + 1]; - int *ja = new int[nb_points * _nb_clusters + 1]; - scalar_t *ar = new scalar_t[nb_points * _nb_clusters + 1]; + int *coeff_row = new int[nb_points * _nb_clusters + 1]; + int *coeff_col = new int[nb_points * _nb_clusters + 1]; + scalar_t *coeff_wgt = new scalar_t[nb_points * _nb_clusters + 1]; lp = glp_create_prob(); @@ -121,18 +119,18 @@ scalar_t Clusterer::baseline_lp_cluster_association(int nb_points, scalar_t **po } } - int l = 1; + int n_coeff = 1; for(int n = 1; n <= nb_points; n++) { for(int k = 1; k <= _nb_clusters; k++) { - ia[l] = n; - ja[l] = n + nb_points * (k - 1); - ar[l] = 1.0; - l++; + coeff_row[n_coeff] = n; + coeff_col[n_coeff] = n + nb_points * (k - 1); + coeff_wgt[n_coeff] = 1.0; + n_coeff++; } } - glp_load_matrix(lp, nb_points * _nb_clusters, ia, ja, ar); + glp_load_matrix(lp, nb_points * _nb_clusters, coeff_row, coeff_col, coeff_wgt); glp_simplex(lp, NULL); @@ -145,9 +143,9 @@ scalar_t Clusterer::baseline_lp_cluster_association(int nb_points, scalar_t **po } } - delete[] ia; - delete[] ja; - delete[] ar; + delete[] coeff_row; + delete[] coeff_col; + delete[] coeff_wgt; glp_delete_prob(lp); @@ -157,13 +155,38 @@ scalar_t Clusterer::baseline_lp_cluster_association(int nb_points, scalar_t **po scalar_t Clusterer::uninformative_lp_cluster_association(int nb_points, scalar_t **points, int nb_classes, int *labels, scalar_t **gamma) { + // N points + // K clusters + // dist(n,k) distance of samples n to cluster k + // + // We want to optimize the + // + // \gamma(n,k) is the association of point n to cluster k + // + // to minimize + // + // \sum_{n,k} \gamma(n,k) dist(n,k) + // + // under + // + // (A) \forall n, k, \gamma(n, k) >= 0 + // (B) \forall n, \sum_k \gamma(n,k) = 1 + // (C) \forall k, \sum_n \gamma(n,k) = N/K + glp_prob *lp; + // The coefficients for the constraints are passed to the glpk + // functions with a sparse representation. + + // ** GLPK USES INDEXES STARTING AT 1, NOT 0. ** + int nb_coeffs = nb_points * _nb_clusters + nb_points * _nb_clusters; - int *ia = new int[nb_coeffs + 1]; - int *ja = new int[nb_coeffs + 1]; - scalar_t *ar = new scalar_t[nb_coeffs + 1]; + int *coeff_row = new int[nb_coeffs + 1]; + int *coeff_col = new int[nb_coeffs + 1]; + scalar_t *coeff_wgt = new scalar_t[nb_coeffs + 1]; + + int n_coeff = 1; scalar_t *nb_samples_per_class = new scalar_t[nb_classes]; for(int c = 0; c < nb_classes; c++) { @@ -179,88 +202,76 @@ scalar_t Clusterer::uninformative_lp_cluster_association(int nb_points, scalar_t glp_set_prob_name(lp, "uninformative_lp_cluster_association"); glp_set_obj_dir(lp, GLP_MIN); - // We have one constraint per point and one per cluster/class + // We have one column per coefficient gamma - glp_add_rows(lp, nb_points + _nb_clusters * nb_classes); - - // (A) For each point, the constraint is that the sum of its - // association coefficients is equal to 1.0 + glp_add_cols(lp, nb_points * _nb_clusters); - for(int n = 1; n <= nb_points; n++) { - int row = n; - glp_set_row_bnds(lp, row, GLP_FX, 1.0, 1.0); - } + // The column for gamma[n][k] point 1<=n<=nb_points and cluster + // 1<=k<=_nb_clusters is nb_points * (k - 1) + n; - // (B) For each pair cluster/class, the sum of the association - // coefficient to this cluster for this class is equal to the number - // of sample of that class, divided by the number of clusters + // The constraints (A) will be expressed by putting directly bounds + // on the variables (i.e. one per column). So we need one row per + // (B) constraint, and one per (C) constraint. - for(int k = 1; k <= _nb_clusters; k++) { - for(int c = 1; c <= nb_classes; c++) { - int row = nb_points + (k - 1) * nb_classes + c; - scalar_t tau = nb_samples_per_class[c-1] / scalar_t(_nb_clusters); - glp_set_row_bnds(lp, row, GLP_FX, tau, tau); - } - } - - // Each one of the constraints above involve a linear combination of - // all the association coefficients + glp_add_rows(lp, nb_points + _nb_clusters * nb_classes); - glp_add_cols(lp, nb_points * _nb_clusters); + // First, we set the weights for the objective function, and the (A) + // constraints on the individual gammas for(int k = 1; k <= _nb_clusters; k++) { for(int n = 1; n <= nb_points; n++) { int col = n + nb_points * (k - 1); - // The LP weight on this association coefficient for the global - // loss is the normalized distance of that sample to the - // centroid of that cluster + // The LP weight on the gammas for the global loss is the + // normalized distance of that sample to the centroid of that + // cluster glp_set_obj_coef(lp, col, distance_to_centroid(points[n-1], k-1)); - // And all the association coefficient is in [0,1] + // The (A) constraints: Each column correspond to one of the + // gamma, and it has to be in [0,1] glp_set_col_bnds(lp, col, GLP_DB, 0.0, 1.0); } } - int l = 1; - - // We build the matrix of the LP coefficients - - // The sums of the association coefficients per points for the - // constraints (A) above. + // The (B) constraints: for each point, the sum of its gamma is + // equal to 1.0 for(int n = 1; n <= nb_points; n++) { + int row = n; + glp_set_row_bnds(lp, row, GLP_FX, 1.0, 1.0); for(int k = 1; k <= _nb_clusters; k++) { - int row = n; - ia[l] = row; - ja[l] = nb_points * (k - 1) + n; - ar[l] = 1.0; - l++; + coeff_row[n_coeff] = row; + coeff_col[n_coeff] = nb_points * (k - 1) + n; + coeff_wgt[n_coeff] = 1.0; + n_coeff++; } } - // And the sums of coefficients for each pair class/cluster for - // constraint (B) above. + // The (C) constraints: For each pair cluster/class, the sum of the + // gammas for this cluster and this class is equal to the number of + // sample of that class, divided by the number of clusters for(int k = 1; k <= _nb_clusters; k++) { for(int c = 1; c <= nb_classes; c++) { int row = nb_points + (k - 1) * nb_classes + c; + scalar_t tau = nb_samples_per_class[c-1] / scalar_t(_nb_clusters); + glp_set_row_bnds(lp, row, GLP_FX, tau, tau); for(int n = 1; n <= nb_points; n++) { if(labels[n-1] == c - 1) { - ia[l] = row; - ja[l] = (k-1) * nb_points + n; - ar[l] = 1.0; - l++; + coeff_row[n_coeff] = row; + coeff_col[n_coeff] = (k-1) * nb_points + n; + coeff_wgt[n_coeff] = 1.0; + n_coeff++; } } } } - ASSERT(l == nb_coeffs + 1); + ASSERT(n_coeff == nb_coeffs + 1); - glp_load_matrix(lp, nb_coeffs, ia, ja, ar); + glp_load_matrix(lp, nb_coeffs, coeff_row, coeff_col, coeff_wgt); // Now a miracle occurs @@ -278,9 +289,9 @@ scalar_t Clusterer::uninformative_lp_cluster_association(int nb_points, scalar_t } delete[] nb_samples_per_class; - delete[] ia; - delete[] ja; - delete[] ar; + delete[] coeff_row; + delete[] coeff_col; + delete[] coeff_wgt; glp_delete_prob(lp); return total_dist;