X-Git-Url: https://www.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mtp_graph.cc;h=682dd808e830eb4f36d99a02695d240fc3da3f50;hb=78b0bdef0b9a3479502c7598fd69a012c297e125;hp=aa294b43bcd6856bd38de8ce945b0588f42b492b;hpb=14e3b33cbe1e0d7deb0b4aa697f6c8b5d43e2963;p=mtp.git diff --git a/mtp_graph.cc b/mtp_graph.cc index aa294b4..682dd80 100644 --- a/mtp_graph.cc +++ b/mtp_graph.cc @@ -52,6 +52,8 @@ public: inline void add_leaving_edge(Edge *e); inline void del_leaving_edge(Edge *e); + inline void decrease_distance_in_heap(Vertex **heap); + inline void increase_distance_in_heap(Vertex **heap, Vertex **heap_bottom); }; ////////////////////////////////////////////////////////////////////// @@ -61,9 +63,7 @@ void Edge::invert() { positivized_length = - positivized_length; origin_vertex->del_leaving_edge(this); terminal_vertex->add_leaving_edge(this); - Vertex *t = terminal_vertex; - terminal_vertex = origin_vertex; - origin_vertex = t; + swap(terminal_vertex, origin_vertex); } ////////////////////////////////////////////////////////////////////// @@ -91,6 +91,42 @@ void Vertex::del_leaving_edge(Edge *e) { } } +void Vertex::decrease_distance_in_heap(Vertex **heap) { + Vertex **p, **h; + // There is some beauty in that + h = heap_slot; + while(h > heap && + (p = heap + (h - heap + 1) / 2 - 1, + (*p)->distance_from_source > (*h)->distance_from_source)) { + swap(*p, *h); + swap((*p)->heap_slot, (*h)->heap_slot); + h = p; + } +} + +void Vertex::increase_distance_in_heap(Vertex **heap, Vertex **heap_bottom) { + Vertex **c1, **c2, **h; + // omg, that's beautiful + h = heap_slot; + while(c1 = heap + 2 * (h - heap) + 1, + c1 < heap_bottom && + (c2 = c1 + 1, + (*c1)->distance_from_source < (*h)->distance_from_source + || + (c2 < heap_bottom && (*c2)->distance_from_source < (*h)->distance_from_source) + )) { + if(c2 < heap_bottom && (*c2)->distance_from_source <= (*c1)->distance_from_source) { + swap(*c2, *h); + swap((*c2)->heap_slot, (*h)->heap_slot); + h = c2; + } else { + swap(*c1, *h); + swap((*c1)->heap_slot, (*h)->heap_slot); + h = c1; + } + } +} + ////////////////////////////////////////////////////////////////////// static int compare_vertex(const void *v1, const void *v2) { @@ -131,7 +167,7 @@ MTPGraph::MTPGraph(int nb_vertices, int nb_edges, paths = 0; nb_paths = 0; - if(compute_dp_distances()) { + if(compute_dp_ranks()) { // Here the distance_from_source field of every vertex is the // number of DP iterations needed to update it. Hence we only have // to process the vertex in that order. @@ -152,6 +188,60 @@ MTPGraph::~MTPGraph() { delete[] paths; } +int MTPGraph::compute_dp_ranks() { + Vertex *v; + Edge *e; + + // This procedure computes for each node the longest link from the + // source and abort if the graph is not a DAG. It works by removing + // successively nodes without predecessor: At the first iteration it + // removes the source, then the nodes with incoming edge only from + // the source, etc. If it can remove all the nodes that way, the + // graph is a DAG. If at some point it can not remove node anymore + // and there are some remaining nodes, the graph is not a DAG. The + // rank of a node is the iteration at which is it removed, and we + // set the distance_from_source fields to this value. + + Vertex **with_predecessor = new Vertex *[_nb_vertices]; + + // All the nodes are with_predecessor at first + for(int k = 0; k < _nb_vertices; k++) { + _vertices[k].distance_from_source = 0; + with_predecessor[k] = &_vertices[k]; + } + + scalar_t rank = 1; + int nb_with_predecessor = _nb_vertices, pred_nb_with_predecessor; + + do { + // We set the distance_from_source field of all the vertices with incoming + // edges to the current rank value + for(int f = 0; f < nb_with_predecessor; f++) { + v = with_predecessor[f]; + for(e = v->leaving_edges; e; e = e->next_leaving_edge) { + e->terminal_vertex->distance_from_source = rank; + } + } + + pred_nb_with_predecessor = nb_with_predecessor; + nb_with_predecessor = 0; + + // We keep all the vertices with incoming nodes + for(int f = 0; f < pred_nb_with_predecessor; f++) { + v = with_predecessor[f]; + if(v->distance_from_source == rank) { + with_predecessor[nb_with_predecessor++] = v; + } + } + + rank++; + } while(nb_with_predecessor < pred_nb_with_predecessor); + + delete[] with_predecessor; + + return nb_with_predecessor == 0; +} + ////////////////////////////////////////////////////////////////////// void MTPGraph::print(ostream *os) { @@ -210,7 +300,6 @@ void MTPGraph::force_positivized_lengths() { Edge *e = _edges + k; if(e->positivized_length < 0) { - #ifdef VERBOSE residual_error -= e->positivized_length; max_error = max(max_error, - e->positivized_length); @@ -223,86 +312,7 @@ void MTPGraph::force_positivized_lengths() { #endif } -int MTPGraph::compute_dp_distances() { - Vertex *v; - Edge *e; - - Vertex **active = new Vertex *[_nb_vertices]; - - // We put everybody in the active - for(int k = 0; k < _nb_vertices; k++) { - _vertices[k].distance_from_source = 0; - active[k] = &_vertices[k]; - } - - int iteration = 1; - int nb_active = _nb_vertices, pred_nb_active; - - do { - // We set the distance_from_source field of all the vertices with incoming - // edges to the current iteration value - for(int f = 0; f < nb_active; f++) { - v = active[f]; - for(e = v->leaving_edges; e; e = e->next_leaving_edge) { - e->terminal_vertex->distance_from_source = iteration; - } - } - - pred_nb_active = nb_active; - nb_active = 0; - - // We keep all the vertices with incoming nodes - for(int f = 0; f < pred_nb_active; f++) { - v = active[f]; - if(v->distance_from_source == iteration) { - active[nb_active++] = v; - } - } - - iteration++; - } while(nb_active < pred_nb_active); - - delete[] active; - - return nb_active == 0; -} - -void MTPGraph::decrease_distance_in_heap(Vertex *v) { - Vertex **p, **h; - // There is some beauty in that - h = v->heap_slot; - while(h > _heap && - (p = _heap + (h - _heap + 1) / 2 - 1, - (*p)->distance_from_source > (*h)->distance_from_source)) { - swap(*p, *h); - swap((*p)->heap_slot, (*h)->heap_slot); - h = p; - } -} - -void MTPGraph::increase_distance_in_heap(Vertex *v) { - Vertex **c1, **c2, **h; - // There is some beauty in that - h = v->heap_slot; - while(c1 = _heap + 2 * (h - _heap + 1) - 1, c2 = c1 + 1, - (c1 < _heap + _heap_size && (*c1)->distance_from_source < (*h)->distance_from_source) - || - (c2 < _heap + _heap_size && (*c2)->distance_from_source < (*h)->distance_from_source) - ) { - if(c1 < _heap + _heap_size && - !(c2 < _heap + _heap_size && (*c2)->distance_from_source < (*c1)->distance_from_source)){ - swap(*c1, *h); - swap((*c1)->heap_slot, (*h)->heap_slot); - h = c1; - } else { - swap(*c2, *h); - swap((*c2)->heap_slot, (*h)->heap_slot); - h = c2; - } - } -} - -void MTPGraph::dp_distance_propagation() { +void MTPGraph::dp_compute_distances() { Vertex *v, *tv; Edge *e; scalar_t d; @@ -322,7 +332,6 @@ void MTPGraph::dp_distance_propagation() { if(d < tv->distance_from_source) { tv->distance_from_source = d; tv->pred_edge_toward_source = e; - decrease_distance_in_heap(tv); } } } @@ -333,7 +342,7 @@ void MTPGraph::dp_distance_propagation() { // pred_edge_toward_source. void MTPGraph::find_shortest_path() { - Vertex *v, *tv, **a, **b; + Vertex *v, *tv, **last_slot; Edge *e; scalar_t d; @@ -344,21 +353,21 @@ void MTPGraph::find_shortest_path() { _heap_size = _nb_vertices; _source->distance_from_source = 0; - decrease_distance_in_heap(_source); + _source->decrease_distance_in_heap(_heap); do { // Get the closest to the source v = _heap[0]; - // Remove it from the heap (swap it with the last in the heap, and + // Remove it from the heap (swap it with the last_slot in the heap, and // update the distance of that one) _heap_size--; - a = _heap; - b = _heap + _heap_size; - swap(*a, *b); swap((*a)->heap_slot, (*b)->heap_slot); - increase_distance_in_heap(_heap[0]); + last_slot = _heap + _heap_size; + swap(*_heap, *last_slot); swap((*_heap)->heap_slot, (*last_slot)->heap_slot); + _heap[0]->increase_distance_in_heap(_heap, _heap + _heap_size); - // Now update the neighbors of the currently closest to the source + // Now update the neighbors of the node currently closest to the + // source for(e = v->leaving_edges; e; e = e->next_leaving_edge) { d = v->distance_from_source + e->positivized_length; tv = e->terminal_vertex; @@ -366,14 +375,14 @@ void MTPGraph::find_shortest_path() { ASSERT(tv->heap_slot - _heap < _heap_size); tv->distance_from_source = d; tv->pred_edge_toward_source = e; - decrease_distance_in_heap(tv); + tv->decrease_distance_in_heap(_heap); } } } while(_heap_size > 0); } void MTPGraph::find_best_paths(scalar_t *lengths) { - scalar_t total_length; + scalar_t shortest_path_length; Vertex *v; Edge *e; @@ -383,16 +392,21 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { _edges[e].positivized_length = _edges[e].length; } - // Update the distance to the source in "good order" - - dp_distance_propagation(); + // Compute the distance of all the nodes from the source by just + // visiting them in the proper DAG ordering we computed when + // building the graph + dp_compute_distances(); do { + // Use the current distance from the source to make all edge + // lengths positive update_positivized_lengths(); + // Fix numerical errors force_positivized_lengths(); + find_shortest_path(); - total_length = 0.0; + shortest_path_length = 0.0; // Do we reach the sink? if(_sink->pred_edge_toward_source) { @@ -400,13 +414,13 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { // original edge lengths v = _sink; while(v->pred_edge_toward_source) { - total_length += v->pred_edge_toward_source->length; + shortest_path_length += v->pred_edge_toward_source->length; v = v->pred_edge_toward_source->origin_vertex; } // If that length is negative - if(total_length < 0.0) { + if(shortest_path_length < 0.0) { #ifdef VERBOSE - cerr << __FILE__ << ": Found a path of length " << total_length << endl; + cerr << __FILE__ << ": Found a path of length " << shortest_path_length << endl; #endif // Invert all the edges along the best path v = _sink; @@ -421,7 +435,7 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { } } - } while(total_length < 0.0); + } while(shortest_path_length < 0.0); // Put back the graph in its original state (i.e. invert edges which // have been inverted in the process)