def create_c_quizzes(
-    model,
-    other_models,
+    models,
     quizz_machine,
     nb_for_train=1000,
     nb_for_test=100,
     min_ave_seq_logproba=None,
 ):
     kept = []
-
+    model_indexes = []
     sum_logits, sum_nb_c_quizzes = 0, 0
 
     while sum([x.size(0) for x in kept]) < nb_for_train + nb_for_test:
-        nb_to_generate = 4 * (nb_for_train + nb_for_test)
+        nb_to_generate = nb_for_train + nb_for_test
+
+        if len(model_indexes) == 0:
+            model_indexes = [i.item() for i in torch.randperm(len(models))]
+
+        model = models[model_indexes.pop()]
 
         new_c_quizzes, nb_correct, ave_seq_logproba = quizz_machine.create_c_quizzes(
+            nb=nb_to_generate,
+            model_for_generation=model,
+            models_for_validation=models,
+            min_ave_seq_logproba=min_ave_seq_logproba,
             n_epoch=n_epoch,
             result_dir=args.result_dir,
             logger=log_string,
-            nb=nb_to_generate,
-            model=model,
-            other_models=other_models,
-            min_ave_seq_logproba=min_ave_seq_logproba,
         )
 
         sum_logits += new_c_quizzes.size(0) * ave_seq_logproba
         sum_nb_c_quizzes += new_c_quizzes.size(0)
 
-        to_keep = new_c_quizzes[nb_correct == len(other_models) - 1]
+        to_keep = new_c_quizzes[nb_correct == len(models) - 1]
 
         if args.dirty_debug:
-            to_keep = new_c_quizzes
+            to_keep = new_c_quizzes[
+                torch.randint(3, (new_c_quizzes.size(0),), device=new_c_quizzes.device)
+                == 0
+            ]
+
+        kept.append(to_keep)
 
         log_string(
-            f"keep {to_keep.size(0)}/{new_c_quizzes.size(0)} c_quizzes ({to_keep.size(0)*100/new_c_quizzes.size(0):.02f}%)"
+            f"keep c_quizzes {to_keep.size(0)}/{new_c_quizzes.size(0)} ({to_keep.size(0)*100/new_c_quizzes.size(0):.02f}%) total {sum([ x.size(0) for x in kept])}/{nb_to_generate}"
         )
 
-        kept.append(to_keep)
-
     new_c_quizzes = torch.cat(kept, dim=0)[: nb_for_train + nb_for_test]
 
     quizz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
     )
 
     if min([m.main_test_accuracy for m in models]) >= accuracy_to_make_c_quizzes:
-        other_models = models.copy()
-        other_models.remove(model)
-
         ave_seq_logproba = create_c_quizzes(
-            model,
-            other_models,
+            models,
             quizz_machine,
             nb_for_train=nb_new_c_quizzes_for_train,
             nb_for_test=nb_new_c_quizzes_for_test,
 
     deterministic_synthesis,
     forbidden_tokens=None,
     logit_biases=None,
-    progress_bar_desc="autoregression",
+    progress_bar_desc=None,
     device=torch.device("cpu"),
 ):
     assert input.size() == ar_mask.size()
 
     def create_c_quizzes(
         self,
+        nb,
+        model_for_generation,
+        models_for_validation,
+        min_ave_seq_logproba,
         n_epoch,
         result_dir,
         logger,
-        nb,
-        model,
-        other_models,
-        min_ave_seq_logproba,
     ):
         ###############################################################
         # Generate quizzes with model
             seq_logproba[...] = 0
 
             masked_inplace_autoregression(
-                model=model,
+                model=model_for_generation,
                 batch_size=self.batch_size,
                 input=c_quizzes,
                 ar_mask=ar_mask,
                 seq_logproba=seq_logproba,
                 temperature=temperature,
                 deterministic_synthesis=False,
-                progress_bar_desc="sampling c_quizzes",
+                # progress_bar_desc="sampling c_quizzes",
                 device=self.device,
             )
 
             else:
                 break
 
-            logger(f"chaging temperature to {temperature}")
+            logger(f"changing temperature to {temperature}")
 
         ###############################################################
         # Create the reverse quizzes
 
         nb_correct = []
 
-        for m in other_models:
+        for model in models_for_validation:
             result = c_quizzes.clone()
 
             masked_inplace_autoregression(
-                model=m,
+                model=model,
                 batch_size=self.batch_size,
                 input=result,
                 ar_mask=ar_mask,
                 seq_logproba=seq_logproba,
                 temperature=1.0,
                 deterministic_synthesis=True,
-                progress_bar_desc="solving c_quizzes",
+                # progress_bar_desc="solving c_quizzes",
                 device=self.device,
             )
 
             reverse_result = reverse_c_quizzes.clone()
 
             masked_inplace_autoregression(
-                model=m,
+                model=model,
                 batch_size=self.batch_size,
                 input=reverse_result,
                 ar_mask=ar_mask,
                 seq_logproba=seq_logproba,
                 temperature=1.0,
                 deterministic_synthesis=True,
-                progress_bar_desc="solving reversed c_quizzes",
+                # progress_bar_desc="solving reversed c_quizzes",
                 device=self.device,
             )