X-Git-Url: https://www.fleuret.org/cgi-bin/gitweb/gitweb.cgi?p=mtp.git;a=blobdiff_plain;f=mtp_graph.cc;h=2cbb33848a3589007528a6e3b1098357dbf3d3df;hp=04b84aaf534aeab753a7f57c2b05004166904163;hb=HEAD;hpb=b33d04fc473e7de0f9d404b014fb694b7ee6c661 diff --git a/mtp_graph.cc b/mtp_graph.cc index 04b84aa..2cbb338 100644 --- a/mtp_graph.cc +++ b/mtp_graph.cc @@ -1,275 +1,520 @@ -/////////////////////////////////////////////////////////////////////////// -// This program is free software: you can redistribute it and/or modify // -// it under the terms of the version 3 of the GNU General Public License // -// as published by the Free Software Foundation. // -// // -// This program is distributed in the hope that it will be useful, but // -// WITHOUT ANY WARRANTY; without even the implied warranty of // -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // -// General Public License for more details. // -// // -// You should have received a copy of the GNU General Public License // -// along with this program. If not, see . // -// // -// Written by and Copyright (C) Francois Fleuret // -// Contact for comments & bug reports // -/////////////////////////////////////////////////////////////////////////// +/* + * mtp is the ``Multi Tracked Paths'', an implementation of the + * k-shortest paths algorithm for multi-target tracking. + * + * Copyright (c) 2012 Idiap Research Institute, http://www.idiap.ch/ + * Written by Francois Fleuret + * + * This file is part of mtp. + * + * mtp is free software: you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 3 as + * published by the Free Software Foundation. + * + * mtp is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY + * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + * License for more details. + * + * You should have received a copy of the GNU General Public License + * along with selector. If not, see . + * + */ #include "mtp_graph.h" -#include +#include #include using namespace std; class Edge { public: - int id, occupied; - scalar_t length, work_length; - Vertex *terminal_vertex; - Edge *next, *pred; + int occupied; + scalar_t length, positivized_length; + Vertex *origin_vertex, *terminal_vertex; + + // These fields are used for the linked list of a vertex's leaving + // edge list. We have to do insertions / deletions. + Edge *next_leaving_edge, *pred_leaving_edge; + + inline void invert(); }; class Vertex { public: - int id, iteration; - Edge *root_edge; scalar_t distance_from_source; - Vertex *pred_vertex; - Edge *pred_edge; + Edge *pred_edge_toward_source; + + Edge *leaving_edge_list_root; + Vertex **heap_slot; + + Vertex(); + + inline void add_leaving_edge(Edge *e); + inline void del_leaving_edge(Edge *e); + inline void decrease_distance_in_heap(Vertex **heap); + inline void increase_distance_in_heap(Vertex **heap, Vertex **heap_bottom); +}; - Vertex() { root_edge = 0; } +////////////////////////////////////////////////////////////////////// - inline void add_edge(Edge *e) { - e->next = root_edge; - e->pred = 0; - if(root_edge) { root_edge->pred = e; } - root_edge = e; +void Edge::invert() { + length = - length; + positivized_length = - positivized_length; + origin_vertex->del_leaving_edge(this); + terminal_vertex->add_leaving_edge(this); + swap(terminal_vertex, origin_vertex); +} + +////////////////////////////////////////////////////////////////////// + +Vertex::Vertex() { + leaving_edge_list_root = 0; +} + +void Vertex::add_leaving_edge(Edge *e) { + e->next_leaving_edge = leaving_edge_list_root; + e->pred_leaving_edge = 0; + if(leaving_edge_list_root) { + leaving_edge_list_root->pred_leaving_edge = e; } + leaving_edge_list_root = e; +} - inline void del_edge(Edge *e) { - if(e == root_edge) { root_edge = e->next; } - if(e->pred) { e->pred->next = e->next; } - if(e->next) { e->next->pred = e->pred; } +void Vertex::del_leaving_edge(Edge *e) { + if(e == leaving_edge_list_root) { + leaving_edge_list_root = e->next_leaving_edge; } -}; + if(e->pred_leaving_edge) { + e->pred_leaving_edge->next_leaving_edge = e->next_leaving_edge; + } + if(e->next_leaving_edge) { + e->next_leaving_edge->pred_leaving_edge = e->pred_leaving_edge; + } +} -void MTPGraph::print() { - for(int n = 0; n < _nb_vertices; n++) { - for(Edge *e = vertices[n].root_edge; e; e = e->next) { - cout << n << " -> " << e->terminal_vertex->id << " " << e->length; - if(e->occupied) { - cout << " *"; - } - cout << endl; - } +void Vertex::decrease_distance_in_heap(Vertex **heap) { + Vertex **p, **h; + h = heap_slot; + while(1) { + if(h <= heap) break; + p = heap + ((h - heap + 1) >> 1) - 1; + if((*p)->distance_from_source <= distance_from_source) break; + swap((*p)->heap_slot, heap_slot); + swap(*p, *h); + h = p; } } -void MTPGraph::print_dot() { - cout << "digraph {" << endl; - cout << " node[shape=circle];" << endl; - for(int n = 0; n < _nb_vertices; n++) { - int a = vertices[n].id; - for(Edge *e = vertices[n].root_edge; e; e = e->next) { - int b = e->terminal_vertex->id; - if(e->occupied) { - cout << " " << b << " -> " << a << " [style=bold,color=black,label=\"" << -e->length << "\"];" << endl; +void Vertex::increase_distance_in_heap(Vertex **heap, Vertex **heap_bottom) { + Vertex **c1, **c2, **h; + h = heap_slot; + while(1) { + c1 = heap + 2 * (h - heap) + 1; + if(c1 >= heap_bottom) break; + c2 = c1 + 1; + if((*c1)->distance_from_source < distance_from_source) { + if(c2 < heap_bottom && (*c2)->distance_from_source < (*c1)->distance_from_source) { + swap((*c2)->heap_slot, heap_slot); + swap(*c2, *h); + h = c2; } else { - cout << " " << a << " -> " << b << " [color=gray,label=\"" << e->length << "\"];" << endl; + swap((*c1)->heap_slot, heap_slot); + swap(*c1, *h); + h = c1; } + } else { + if(c2 < heap_bottom && (*c2)->distance_from_source < distance_from_source) { + swap((*c2)->heap_slot, heap_slot); + swap(*c2, *h); + h = c2; + } else break; } } - cout << "}" << endl; } +////////////////////////////////////////////////////////////////////// + MTPGraph::MTPGraph(int nb_vertices, int nb_edges, - int *from, int *to, - int src, int snk) { + int *vertex_from, int *vertex_to, + int source, int sink) { _nb_vertices = nb_vertices; _nb_edges = nb_edges; - edges = new Edge[_nb_edges]; - vertices = new Vertex[_nb_vertices]; - _front = new Vertex *[_nb_vertices]; - _new_front = new Vertex *[_nb_vertices]; + _edges = new Edge[_nb_edges]; + _vertices = new Vertex[_nb_vertices]; + _heap = new Vertex *[_nb_vertices]; + _dp_order = new Vertex *[_nb_vertices]; - _source = &vertices[src]; - _sink = &vertices[snk]; + _source = &_vertices[source]; + _sink = &_vertices[sink]; - for(int v = 0; v < _nb_vertices; v++) { - vertices[v].id = v; + for(int e = 0; e < nb_edges; e++) { + _vertices[vertex_from[e]].add_leaving_edge(&_edges[e]); + _edges[e].occupied = 0; + _edges[e].origin_vertex = &_vertices[vertex_from[e]]; + _edges[e].terminal_vertex = &_vertices[vertex_to[e]]; } - for(int e = 0; e < nb_edges; e++) { - vertices[from[e]].add_edge(&edges[e]); - edges[e].occupied = 0; - edges[e].id = e; - edges[e].terminal_vertex = &vertices[to[e]]; + for(int v = 0; v < _nb_vertices; v++) { + _heap[v] = &_vertices[v]; + _vertices[v].heap_slot = &_heap[v]; } + paths = 0; + nb_paths = 0; + + compute_dp_ordering(); } MTPGraph::~MTPGraph() { - delete[] vertices; - delete[] edges; - delete[] _front; - delete[] _new_front; + delete[] _vertices; + delete[] _dp_order; + delete[] _heap; + delete[] _edges; + for(int p = 0; p < nb_paths; p++) delete paths[p]; + delete[] paths; } -void MTPGraph::initialize_work_lengths() { - scalar_t length_min = 0; - for(int n = 0; n < _nb_vertices; n++) { - for(Edge *e = vertices[n].root_edge; e; e = e->next) { - length_min = min(e->length, length_min); - } +////////////////////////////////////////////////////////////////////// + +void MTPGraph::print(ostream *os) { + for(int k = 0; k < _nb_edges; k++) { + Edge *e = &_edges[k]; + (*os) << e->origin_vertex - _vertices + << " -> " + << e->terminal_vertex - _vertices + << " (" << e->length << ")"; + if(e->occupied) { (*os) << " *"; } + (*os) << endl; } - for(int n = 0; n < _nb_vertices; n++) { - for(Edge *e = vertices[n].root_edge; e; e = e->next) { - e->work_length = e->length - length_min; +} + +void MTPGraph::print_dot(ostream *os) { + (*os) << "digraph {" << endl; + (*os) << " rankdir=\"LR\";" << endl; + (*os) << " node [shape=circle,width=0.75,fixedsize=true];" << endl; + (*os) << " edge [color=gray,arrowhead=open]" << endl; + (*os) << " " << _source - _vertices << " [peripheries=2];" << endl; + (*os) << " " << _sink - _vertices << " [peripheries=2];" << endl; + for(int k = 0; k < _nb_edges; k++) { + Edge *e = &_edges[k]; + (*os) << " " + << e->origin_vertex - _vertices + << " -> " + << e->terminal_vertex - _vertices + << " ["; + if(e->occupied) { + (*os) << "style=bold,color=black,"; } + (*os) << "label=\"" << e->length << "\"];" << endl; } + (*os) << "}" << endl; } -void MTPGraph::update_work_lengths() { - for(int n = 0; n < _nb_vertices; n++) { - scalar_t d = vertices[n].distance_from_source; - for(Edge *e = vertices[n].root_edge; e; e = e->next) { - e->work_length += d - e->terminal_vertex->distance_from_source; - } +////////////////////////////////////////////////////////////////////// + +void MTPGraph::update_positivized_lengths() { + for(int k = 0; k < _nb_edges; k++) { + Edge *e = &_edges[k]; + e->positivized_length += + e->origin_vertex->distance_from_source - e->terminal_vertex->distance_from_source; } } -void MTPGraph::force_positive_work_lengths() { +void MTPGraph::force_positivized_lengths() { #ifdef VERBOSE scalar_t residual_error = 0.0; + scalar_t max_error = 0.0; #endif - for(int n = 0; n < _nb_vertices; n++) { - for(Edge *e = vertices[n].root_edge; e; e = e->next) { - if(e->work_length < 0) { + for(int k = 0; k < _nb_edges; k++) { + Edge *e = &_edges[k]; + + if(e->positivized_length < 0) { #ifdef VERBOSE - residual_error -= e->work_length; + residual_error -= e->positivized_length; + max_error = max(max_error, - e->positivized_length); #endif - e->work_length = 0.0; - } + e->positivized_length = 0.0; } } #ifdef VERBOSE - cerr << "residual_error " << residual_error << endl; + cerr << __FILE__ << ": residual_error " << residual_error << " max_error " << max_error << endl; #endif } -void MTPGraph::find_shortest_path(Vertex **_front, Vertex **_new_front) { - Vertex **tmp_front; - int tmp_front_size; +void MTPGraph::dp_compute_distances() { Vertex *v, *tv; + Edge *e; scalar_t d; - for(int v = 0; v < _nb_vertices; v++) { - vertices[v].distance_from_source = FLT_MAX; - vertices[v].pred_vertex = 0; - vertices[v].pred_edge = 0; - vertices[v].iteration = 0; + for(int k = 0; k < _nb_vertices; k++) { + _vertices[k].distance_from_source = FLT_MAX; + _vertices[k].pred_edge_toward_source = 0; } - int iteration = 0; - - int _front_size = 0, _new_front_size; - _front[_front_size++] = _source; _source->distance_from_source = 0; - do { - _new_front_size = 0; - iteration++; - for(int f = 0; f < _front_size; f++) { - v = _front[f]; - for(Edge *e = v->root_edge; e; e = e->next) { - d = v->distance_from_source + e->work_length; - tv = e->terminal_vertex; - if(d < tv->distance_from_source) { - tv->distance_from_source = d; - tv->pred_vertex = v; - tv->pred_edge = e; - if(tv->iteration < iteration) { - _new_front[_new_front_size++] = tv; - tv->iteration = iteration; - } - } + for(int k = 0; k < _nb_vertices; k++) { + v = _dp_order[k]; + for(e = v->leaving_edge_list_root; e; e = e->next_leaving_edge) { + d = v->distance_from_source + e->positivized_length; + tv = e->terminal_vertex; + if(d < tv->distance_from_source) { + tv->distance_from_source = d; + tv->pred_edge_toward_source = e; } } + } +} + +// This method does not change the edge occupation. It only sets +// properly, for every vertex, the fields distance_from_source and +// pred_edge_toward_source. - tmp_front = _new_front; - _new_front = _front; - _front = tmp_front; +void MTPGraph::find_shortest_path() { + int heap_size; + Vertex *v, *tv, **last_slot; + Edge *e; + scalar_t d; + + for(int k = 0; k < _nb_vertices; k++) { + _vertices[k].distance_from_source = FLT_MAX; + _vertices[k].pred_edge_toward_source = 0; + } - tmp_front_size = _new_front_size; - _new_front_size = _front_size; - _front_size = tmp_front_size; - } while(_front_size > 0); + heap_size = _nb_vertices; + _source->distance_from_source = 0; + _source->decrease_distance_in_heap(_heap); + + while(heap_size > 1) { + // Get the closest to the source + v = _heap[0]; + + // Remove it from the heap (swap it with the last_slot in the heap, and + // update the distance of that one) + heap_size--; + last_slot = _heap + heap_size; + swap(*_heap, *last_slot); swap((*_heap)->heap_slot, (*last_slot)->heap_slot); + (*_heap)->increase_distance_in_heap(_heap, last_slot); + + // Now update the neighbors of the node currently closest to the + // source + for(e = v->leaving_edge_list_root; e; e = e->next_leaving_edge) { + d = v->distance_from_source + e->positivized_length; + tv = e->terminal_vertex; + if(d < tv->distance_from_source) { + ASSERT(tv->heap_slot < last_slot); + tv->distance_from_source = d; + tv->pred_edge_toward_source = e; + tv->decrease_distance_in_heap(_heap); + } + } + } } -void MTPGraph::find_best_paths(scalar_t *lengths, int *result_edge_occupation) { - scalar_t total_length; +void MTPGraph::find_best_paths(scalar_t *lengths) { + scalar_t shortest_path_length; + Vertex *v; + Edge *e; for(int e = 0; e < _nb_edges; e++) { - edges[e].length = lengths[e]; - edges[e].work_length = edges[e].length; + _edges[e].length = lengths[e]; + _edges[e].occupied = 0; + _edges[e].positivized_length = _edges[e].length; } - find_shortest_path(_front, _new_front); - update_work_lengths(); - - // initialize_work_lengths(); + // Compute the distance of all the nodes from the source by just + // visiting them in the proper DAG ordering we computed when + // building the graph + dp_compute_distances(); do { - force_positive_work_lengths(); - find_shortest_path(_front, _new_front); - update_work_lengths(); - - total_length = 0.0; - - // Do we reach the _sink? - if(_sink->pred_edge) { - - // If yes, compute the length of the best path - for(Vertex *v = _sink; v->pred_edge; v = v->pred_vertex) { - total_length += v->pred_edge->length; + // Use the current distance from the source to make all edge + // lengths positive + update_positivized_lengths(); + // Fix numerical errors + force_positivized_lengths(); + + find_shortest_path(); + + shortest_path_length = 0.0; + + // Do we reach the sink? + if(_sink->pred_edge_toward_source) { + // If yes, compute the length of the best path according to the + // original edge lengths + v = _sink; + while(v->pred_edge_toward_source) { + shortest_path_length += v->pred_edge_toward_source->length; + v = v->pred_edge_toward_source->origin_vertex; } - // If that length is negative - if(total_length < 0.0) { + if(shortest_path_length < 0.0) { +#ifdef VERBOSE + cerr << __FILE__ << ": Found a path of length " << shortest_path_length << endl; +#endif // Invert all the edges along the best path - for(Vertex *v = _sink; v->pred_edge; v = v->pred_vertex) { - Edge *e = v->pred_edge; - e->terminal_vertex = v->pred_vertex; + v = _sink; + while(v->pred_edge_toward_source) { + e = v->pred_edge_toward_source; + v = e->origin_vertex; + e->invert(); + // This is the only place where we change the occupations of + // edges e->occupied = 1 - e->occupied; - e->length = - e->length; - e->work_length = - e->work_length; - v->pred_vertex->del_edge(e); - v->add_edge(e); } } } - } while(total_length < 0.0); + } while(shortest_path_length < 0.0); - for(Edge *e = _sink->root_edge; e; e = e->next) { - if(e->occupied) { - Edge *f = e; - cout << "PATH " << _sink->id; - while(f) { - cout << " " << f->terminal_vertex->id; - for(f = f->terminal_vertex->root_edge; f && !f->occupied; f = f->next); + // Put back the graph in its original state (i.e. invert edges which + // have been inverted in the process) + for(int k = 0; k < _nb_edges; k++) { + e = &_edges[k]; + if(e->occupied) { e->invert(); } + } +} + +int MTPGraph::retrieve_one_path(Edge *e, Path *path, int *used_edges) { + Edge *f, *next = 0; + int l = 0, nb_occupied_next; + + if(path) { + path->nodes[l++] = int(e->origin_vertex - _vertices); + path->length = e->length; + } else l++; + + while(e->terminal_vertex != _sink) { + if(path) { + path->nodes[l++] = int(e->terminal_vertex - _vertices); + path->length += e->length; + } else l++; + + nb_occupied_next = 0; + for(f = e->terminal_vertex->leaving_edge_list_root; f; f = f->next_leaving_edge) { + if(f->occupied && !used_edges[f - _edges]) { + nb_occupied_next++; next = f; + } + } + +#ifdef DEBUG + if(nb_occupied_next == 0) { + cerr << __FILE__ << ": retrieve_one_path: Non-sink end point." << endl; + abort(); + } +#endif + + if(path) { used_edges[next - _edges] = 1; } + + e = next; + } + + if(path) { + path->nodes[l++] = int(e->terminal_vertex - _vertices); + path->length += e->length; + } else l++; + + return l; +} + +////////////////////////////////////////////////////////////////////// + +void MTPGraph::compute_dp_ordering() { + Vertex *v; + Edge *e; + int ntv; + + // This method orders the nodes by putting first the ones with no + // predecessors, then going on adding nodes whose predecessors have + // all been already added. Computing the distances from the source + // by visiting nodes in that order is equivalent to DP. + + int *nb_predecessors = new int[_nb_vertices]; + + Vertex **already_processed = _dp_order, **front = _dp_order, **new_front = _dp_order; + + for(int k = 0; k < _nb_vertices; k++) { + nb_predecessors[k] = 0; + } + + for(int k = 0; k < _nb_vertices; k++) { + v = &_vertices[k]; + for(e = v->leaving_edge_list_root; e; e = e->next_leaving_edge) { + ntv = int(e->terminal_vertex - _vertices); + nb_predecessors[ntv]++; + } + } + + for(int k = 0; k < _nb_vertices; k++) { + if(nb_predecessors[k] == 0) { + *(front++) = _vertices + k; + } + } + + while(already_processed < front) { + // Here, nodes before already_processed can be ignored, nodes + // before front were set to 0 predecessors during the previous + // iteration. During this new iteration, we have to visit the + // successors of these ones only, since they are the only ones + // which may end up with no predecessors. + new_front = front; + while(already_processed < front) { + v = *(already_processed++); + for(e = v->leaving_edge_list_root; e; e = e->next_leaving_edge) { + ntv = int(e->terminal_vertex - _vertices); + nb_predecessors[ntv]--; + ASSERT(nb_predecessors[ntv] >= 0); + if(nb_predecessors[ntv] == 0) { + *(new_front++) = e->terminal_vertex; + } } - cout << endl; } + front = new_front; + } + + if(already_processed < _dp_order + _nb_vertices) { + cerr << __FILE__ << ": The graph is not a DAG." << endl; + abort(); + } + + delete[] nb_predecessors; +} + +////////////////////////////////////////////////////////////////////// + +void MTPGraph::retrieve_disjoint_paths() { + Edge *e; + int p, l; + int *used_edges; + + for(int p = 0; p < nb_paths; p++) delete paths[p]; + delete[] paths; + + nb_paths = 0; + for(e = _source->leaving_edge_list_root; e; e = e->next_leaving_edge) { + if(e->occupied) { nb_paths++; } + } + + paths = new Path *[nb_paths]; + used_edges = new int[_nb_edges]; + for(int e = 0; e < _nb_edges; e++) { + used_edges[e] = 0; } - for(int n = 0; n < _nb_vertices; n++) { - Vertex *v = &vertices[n]; - for(Edge *e = v->root_edge; e; e = e->next) { - result_edge_occupation[e->id] = e->occupied; + p = 0; + for(e = _source->leaving_edge_list_root; e; e = e->next_leaving_edge) { + if(e->occupied && !used_edges[e - _edges]) { + l = retrieve_one_path(e, 0, used_edges); + paths[p] = new Path(l); + retrieve_one_path(e, paths[p], used_edges); + used_edges[e - _edges] = 1; + p++; } } + + delete[] used_edges; }