Cosmetics.
[pysvrt.git] / cnn-svrt.py
index 1d5e887..8840c4b 100755 (executable)
@@ -23,6 +23,8 @@
 
 import time
 import argparse
+import math
+
 from colorama import Fore, Back, Style
 
 import torch
@@ -43,22 +45,30 @@ parser = argparse.ArgumentParser(
     formatter_class = argparse.ArgumentDefaultsHelpFormatter
 )
 
-parser.add_argument('--nb_train_samples',
-                    type = int, default = 100000,
+parser.add_argument('--nb_train_batches',
+                    type = int, default = 1000,
                     help = 'How many samples for train')
 
-parser.add_argument('--nb_test_samples',
-                    type = int, default = 10000,
+parser.add_argument('--nb_test_batches',
+                    type = int, default = 100,
                     help = 'How many samples for test')
 
 parser.add_argument('--nb_epochs',
-                    type = int, default = 25,
+                    type = int, default = 50,
                     help = 'How many training epochs')
 
+parser.add_argument('--batch_size',
+                    type = int, default = 100,
+                    help = 'Mini-batch size')
+
 parser.add_argument('--log_file',
                     type = str, default = 'cnn-svrt.log',
                     help = 'Log file name')
 
+parser.add_argument('--compress_vignettes',
+                    action='store_true', default = False,
+                    help = 'Use lossless compression to reduce the memory footprint')
+
 args = parser.parse_args()
 
 ######################################################################
@@ -68,42 +78,99 @@ log_file = open(args.log_file, 'w')
 print(Fore.RED + 'Logging into ' + args.log_file + Style.RESET_ALL)
 
 def log_string(s):
-    s = Fore.GREEN + time.ctime() + Style.RESET_ALL + ' ' + \
-        str(problem_number) + ' ' + s
+    s = Fore.GREEN + time.ctime() + Style.RESET_ALL + ' ' + s
     log_file.write(s + '\n')
     log_file.flush()
     print(s)
 
 ######################################################################
 
-def generate_set(p, n):
-    target = torch.LongTensor(n).bernoulli_(0.5)
-    t = time.time()
-    input = svrt.generate_vignettes(p, target)
-    t = time.time() - t
-    log_string('DATA_SET_GENERATION {:.02f} sample/s'.format(n / t))
-    input = input.view(input.size(0), 1, input.size(1), input.size(2)).float()
-    return Variable(input), Variable(target)
+class VignetteSet:
+    def __init__(self, problem_number, nb_batches):
+        self.batch_size = args.batch_size
+        self.problem_number = problem_number
+        self.nb_batches = nb_batches
+        self.nb_samples = self.nb_batches * self.batch_size
+        self.targets = []
+        self.inputs = []
+
+        acc = 0.0
+        acc_sq = 0.0
+
+        for b in range(0, self.nb_batches):
+            target = torch.LongTensor(self.batch_size).bernoulli_(0.5)
+            input = svrt.generate_vignettes(problem_number, target)
+            input = input.float().view(input.size(0), 1, input.size(1), input.size(2))
+            if torch.cuda.is_available():
+                input = input.cuda()
+                target = target.cuda()
+            acc += input.sum() / input.numel()
+            acc_sq += input.pow(2).sum() /  input.numel()
+            self.targets.append(target)
+            self.inputs.append(input)
+
+        mean = acc / self.nb_batches
+        std = math.sqrt(acc_sq / self.nb_batches - mean * mean)
+        for b in range(0, self.nb_batches):
+            self.inputs[b].sub_(mean).div_(std)
+
+    def get_batch(self, b):
+        return self.inputs[b], self.targets[b]
+
+######################################################################
+
+class CompressedVignetteSet:
+    def __init__(self, problem_number, nb_batches):
+        self.batch_size = args.batch_size
+        self.problem_number = problem_number
+        self.nb_batches = nb_batches
+        self.nb_samples = self.nb_batches * self.batch_size
+        self.targets = []
+        self.input_storages = []
+
+        acc = 0.0
+        acc_sq = 0.0
+        for b in range(0, self.nb_batches):
+            target = torch.LongTensor(self.batch_size).bernoulli_(0.5)
+            input = svrt.generate_vignettes(problem_number, target)
+            acc += input.float().sum() / input.numel()
+            acc_sq += input.float().pow(2).sum() /  input.numel()
+            self.targets.append(target)
+            self.input_storages.append(svrt.compress(input.storage()))
+
+        self.mean = acc / self.nb_batches
+        self.std = math.sqrt(acc_sq / self.nb_batches - self.mean * self.mean)
+
+    def get_batch(self, b):
+        input = torch.ByteTensor(svrt.uncompress(self.input_storages[b])).float()
+        input = input.view(self.batch_size, 1, 128, 128).sub_(self.mean).div_(self.std)
+        target = self.targets[b]
+
+        if torch.cuda.is_available():
+            input = input.cuda()
+            target = target.cuda()
+
+        return input, target
 
 ######################################################################
 
 # Afroze's ShallowNet
 
-#                    map size   nb. maps
-#                  ----------------------
-#                    128x128    1
-# -- conv(21x21)  -> 108x108    6
-# -- max(2x2)     -> 54x54      6
-# -- conv(19x19)  -> 36x36      16
-# -- max(2x2)     -> 18x18      16
-# -- conv(18x18 -> 1x1        120
-# -- reshape      -> 120        1
-# -- full(120x84) -> 84         1
-# -- full(84x2)   -> 2          1
-
-class Net(nn.Module):
+#                       map size   nb. maps
+#                     ----------------------
+#    input                128x128    1
+# -- conv(21x21 x 6)   -> 108x108    6
+# -- max(2x2)          -> 54x54      6
+# -- conv(19x19 x 16)  -> 36x36      16
+# -- max(2x2)          -> 18x18      16
+# -- conv(18x18 x 120) -> 1x1        120
+# -- reshape           -> 120        1
+# -- full(120x84)      -> 84         1
+# -- full(84x2)        -> 2          1
+
+class AfrozeShallowNet(nn.Module):
     def __init__(self):
-        super(Net, self).__init__()
+        super(AfrozeShallowNet, self).__init__()
         self.conv1 = nn.Conv2d(1, 6, kernel_size=21)
         self.conv2 = nn.Conv2d(6, 16, kernel_size=19)
         self.conv3 = nn.Conv2d(16, 120, kernel_size=18)
@@ -119,73 +186,94 @@ class Net(nn.Module):
         x = self.fc2(x)
         return x
 
-def train_model(train_input, train_target):
-    model, criterion = Net(), nn.CrossEntropyLoss()
+def train_model(model, train_set):
+    batch_size = args.batch_size
+    criterion = nn.CrossEntropyLoss()
 
     if torch.cuda.is_available():
-        model.cuda()
         criterion.cuda()
 
-    optimizer, bs = optim.SGD(model.parameters(), lr = 1e-2), 100
+    optimizer = optim.SGD(model.parameters(), lr = 1e-2)
 
-    for k in range(0, args.nb_epochs):
+    for e in range(0, args.nb_epochs):
         acc_loss = 0.0
-        for b in range(0, train_input.size(0), bs):
-            output = model.forward(train_input.narrow(0, b, bs))
-            loss = criterion(output, train_target.narrow(0, b, bs))
+        for b in range(0, train_set.nb_batches):
+            input, target = train_set.get_batch(b)
+            output = model.forward(Variable(input))
+            loss = criterion(output, Variable(target))
             acc_loss = acc_loss + loss.data[0]
             model.zero_grad()
             loss.backward()
             optimizer.step()
-        log_string('TRAIN_LOSS {:d} {:f}'.format(k, acc_loss))
+        log_string('train_loss {:d} {:f}'.format(e + 1, acc_loss))
 
     return model
 
 ######################################################################
 
-def nb_errors(model, data_input, data_target, bs = 100):
+def nb_errors(model, data_set):
     ne = 0
-
-    for b in range(0, data_input.size(0), bs):
-        output = model.forward(data_input.narrow(0, b, bs))
+    for b in range(0, data_set.nb_batches):
+        input, target = data_set.get_batch(b)
+        output = model.forward(Variable(input))
         wta_prediction = output.data.max(1)[1].view(-1)
 
-        for i in range(0, bs):
-            if wta_prediction[i] != data_target.narrow(0, b, bs).data[i]:
+        for i in range(0, data_set.batch_size):
+            if wta_prediction[i] != target[i]:
                 ne = ne + 1
 
     return ne
 
 ######################################################################
 
+for arg in vars(args):
+    log_string('argument ' + str(arg) + ' ' + str(getattr(args, arg)))
+
 for problem_number in range(1, 24):
-    train_input, train_target = generate_set(problem_number, args.nb_train_samples)
-    test_input, test_target = generate_set(problem_number, args.nb_test_samples)
+    if args.compress_vignettes:
+        train_set = CompressedVignetteSet(problem_number, args.nb_train_batches)
+        test_set = CompressedVignetteSet(problem_number, args.nb_test_batches)
+    else:
+        train_set = VignetteSet(problem_number, args.nb_train_batches)
+        test_set = VignetteSet(problem_number, args.nb_test_batches)
+
+    model = AfrozeShallowNet()
 
     if torch.cuda.is_available():
-        train_input, train_target = train_input.cuda(), train_target.cuda()
-        test_input, test_target = test_input.cuda(), test_target.cuda()
+        model.cuda()
+
+    nb_parameters = 0
+    for p in model.parameters():
+        nb_parameters += p.numel()
+    log_string('nb_parameters {:d}'.format(nb_parameters))
 
-    mu, std = train_input.data.mean(), train_input.data.std()
-    train_input.data.sub_(mu).div_(std)
-    test_input.data.sub_(mu).div_(std)
+    model_filename = 'model_' + str(problem_number) + '.param'
 
-    model = train_model(train_input, train_target)
+    try:
+        model.load_state_dict(torch.load(model_filename))
+        log_string('loaded_model ' + model_filename)
+    except:
+        log_string('training_model')
+        train_model(model, train_set)
+        torch.save(model.state_dict(), model_filename)
+        log_string('saved_model ' + model_filename)
 
-    nb_train_errors = nb_errors(model, train_input, train_target)
+    nb_train_errors = nb_errors(model, train_set)
 
-    log_string('TRAIN_ERROR {:.02f}% {:d} {:d}'.format(
-        100 * nb_train_errors / train_input.size(0),
+    log_string('train_error {:d} {:.02f}% {:d} {:d}'.format(
+        problem_number,
+        100 * nb_train_errors / train_set.nb_samples,
         nb_train_errors,
-        train_input.size(0))
+        train_set.nb_samples)
     )
 
-    nb_test_errors = nb_errors(model, test_input, test_target)
+    nb_test_errors = nb_errors(model, test_set)
 
-    log_string('TEST_ERROR {:.02f}% {:d} {:d}'.format(
-        100 * nb_test_errors / test_input.size(0),
+    log_string('test_error {:d} {:.02f}% {:d} {:d}'.format(
+        problem_number,
+        100 * nb_test_errors / test_set.nb_samples,
         nb_test_errors,
-        test_input.size(0))
+        test_set.nb_samples)
     )
 
 ######################################################################