X-Git-Url: https://www.fleuret.org/cgi-bin/gitweb/gitweb.cgi?p=pytorch.git;a=blobdiff_plain;f=mi_estimator.py;h=47381ef3007bf511341dbb0aa3dbc654a45e29a2;hp=f8b859dd6fc07dc69f2b8fecfa2c30f4d1eeace3;hb=HEAD;hpb=236238fdfe7d65612b58fbbb5bb29cff4ec45d54 diff --git a/mi_estimator.py b/mi_estimator.py index f8b859d..1a167fe 100755 --- a/mi_estimator.py +++ b/mi_estimator.py @@ -1,21 +1,9 @@ #!/usr/bin/env python -######################################################################### -# This program is free software: you can redistribute it and/or modify # -# it under the terms of the version 3 of the GNU General Public License # -# as published by the Free Software Foundation. # -# # -# This program is distributed in the hope that it will be useful, but # -# WITHOUT ANY WARRANTY; without even the implied warranty of # -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # -# General Public License for more details. # -# # -# You should have received a copy of the GNU General Public License # -# along with this program. If not, see . # -# # -# Written by and Copyright (C) Francois Fleuret # -# Contact for comments & bug reports # -######################################################################### +# Any copyright is dedicated to the Public Domain. +# https://creativecommons.org/publicdomain/zero/1.0/ + +# Written by Francois Fleuret import argparse, math, sys from copy import deepcopy @@ -29,62 +17,65 @@ import torch.nn.functional as F if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True - device = torch.device('cuda') + device = torch.device("cuda") else: - device = torch.device('cpu') + device = torch.device("cpu") ###################################################################### parser = argparse.ArgumentParser( - description = '''An implementation of a Mutual Information estimator with a deep model - -Three different toy data-sets are implemented: + description="""An implementation of a Mutual Information estimator with a deep model - (1) Two MNIST images of same class. The "true" MI is the log of the - number of used MNIST classes. + Three different toy data-sets are implemented, each consists of + pairs of samples, that may be from different spaces: - (2) One MNIST image and a pair of real numbers whose difference is - the class of the image. The "true" MI is the log of the number of - used MNIST classes. + (1) Two MNIST images of same class. The "true" MI is the log of the + number of used MNIST classes. - (3) Two 1d sequences, the first with a single peak, the second with - two peaks, and the height of the peak in the first is the - difference of timing of the peaks in the second. The "true" MI is - the log of the number of possible peak heights.''', + (2) One MNIST image and a pair of real numbers whose difference is + the class of the image. The "true" MI is the log of the number of + used MNIST classes. - formatter_class = argparse.ArgumentDefaultsHelpFormatter + (3) Two 1d sequences, the first with a single peak, the second with + two peaks, and the height of the peak in the first is the + difference of timing of the peaks in the second. The "true" MI is + the log of the number of possible peak heights.""", + formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) -parser.add_argument('--data', - type = str, default = 'image_pair', - help = 'What data: image_pair, image_values_pair, sequence_pair') +parser.add_argument( + "--data", + type=str, + default="image_pair", + help="What data: image_pair, image_values_pair, sequence_pair", +) -parser.add_argument('--seed', - type = int, default = 0, - help = 'Random seed (default 0, < 0 is no seeding)') +parser.add_argument( + "--seed", type=int, default=0, help="Random seed (default 0, < 0 is no seeding)" +) -parser.add_argument('--mnist_classes', - type = str, default = '0, 1, 3, 5, 6, 7, 8, 9', - help = 'What MNIST classes to use') +parser.add_argument( + "--mnist_classes", + type=str, + default="0, 1, 3, 5, 6, 7, 8, 9", + help="What MNIST classes to use", +) -parser.add_argument('--nb_classes', - type = int, default = 2, - help = 'How many classes for sequences') +parser.add_argument( + "--nb_classes", type=int, default=2, help="How many classes for sequences" +) -parser.add_argument('--nb_epochs', - type = int, default = 50, - help = 'How many epochs') +parser.add_argument("--nb_epochs", type=int, default=50, help="How many epochs") -parser.add_argument('--batch_size', - type = int, default = 100, - help = 'Batch size') +parser.add_argument("--batch_size", type=int, default=100, help="Batch size") -parser.add_argument('--learning_rate', - type = float, default = 1e-3, - help = 'Batch size') +parser.add_argument("--learning_rate", type=float, default=1e-3, help="Batch size") -parser.add_argument('--independent', action = 'store_true', - help = 'Should the pair components be independent') +parser.add_argument( + "--independent", + action="store_true", + help="Should the pair components be independent", +) ###################################################################### @@ -93,26 +84,29 @@ args = parser.parse_args() if args.seed >= 0: torch.manual_seed(args.seed) -used_MNIST_classes = torch.tensor(eval('[' + args.mnist_classes + ']'), device = device) +used_MNIST_classes = torch.tensor(eval("[" + args.mnist_classes + "]"), device=device) ###################################################################### + def entropy(target): probas = [] for k in range(target.max() + 1): n = (target == k).sum().item() - if n > 0: probas.append(n) + if n > 0: + probas.append(n) probas = torch.tensor(probas).float() probas /= probas.sum() - return - (probas * probas.log()).sum().item() + return -(probas * probas.log()).sum().item() + ###################################################################### -train_set = torchvision.datasets.MNIST('./data/mnist/', train = True, download = True) -train_input = train_set.train_data.view(-1, 1, 28, 28).to(device).float() +train_set = torchvision.datasets.MNIST("./data/mnist/", train=True, download=True) +train_input = train_set.train_data.view(-1, 1, 28, 28).to(device).float() train_target = train_set.train_labels.to(device) -test_set = torchvision.datasets.MNIST('./data/mnist/', train = False, download = True) +test_set = torchvision.datasets.MNIST("./data/mnist/", train=False, download=True) test_input = test_set.test_data.view(-1, 1, 28, 28).to(device).float() test_target = test_set.test_labels.to(device) @@ -126,7 +120,8 @@ test_input.sub_(mu).div_(std) # half of the samples, with a[i] and b[i] of same class for any i, and # c is a 1d long tensor real classes -def create_image_pairs(train = False): + +def create_image_pairs(train=False): ua, ub, uc = [], [], [] if train: @@ -135,11 +130,12 @@ def create_image_pairs(train = False): input, target = test_input, test_target for i in used_MNIST_classes: - used_indices = torch.arange(input.size(0), device = target.device)\ - .masked_select(target == i.item()) + used_indices = torch.arange(input.size(0), device=target.device).masked_select( + target == i.item() + ) x = input[used_indices] x = x[torch.randperm(x.size(0))] - hs = x.size(0)//2 + hs = x.size(0) // 2 ua.append(x.narrow(0, 0, hs)) ub.append(x.narrow(0, hs, hs)) uc.append(target[used_indices]) @@ -156,6 +152,7 @@ def create_image_pairs(train = False): return a, b, c + ###################################################################### # Returns a triplet a, b, c where a are the standard MNIST images, c @@ -164,7 +161,8 @@ def create_image_pairs(train = False): # b[n, 0] ~ Uniform(0, 10) # b[n, 1] ~ b[n, 0] + Uniform(0, 0.5) + c[n] -def create_image_values_pairs(train = False): + +def create_image_values_pairs(train=False): ua, ub = [], [] if train: @@ -172,10 +170,12 @@ def create_image_values_pairs(train = False): else: input, target = test_input, test_target - m = torch.zeros(used_MNIST_classes.max() + 1, dtype = torch.uint8, device = target.device) + m = torch.zeros( + used_MNIST_classes.max() + 1, dtype=torch.uint8, device=target.device + ) m[used_MNIST_classes] = 1 m = m[target] - used_indices = torch.arange(input.size(0), device = target.device).masked_select(m) + used_indices = torch.arange(input.size(0), device=target.device).masked_select(m) input = input[used_indices].contiguous() target = target[used_indices].contiguous() @@ -188,40 +188,46 @@ def create_image_values_pairs(train = False): b[:, 1].uniform_(0.0, 0.5) if args.independent: - b[:, 1] += b[:, 0] + \ - used_MNIST_classes[torch.randint(len(used_MNIST_classes), target.size())] + b[:, 1] += ( + b[:, 0] + + used_MNIST_classes[torch.randint(len(used_MNIST_classes), target.size())] + ) else: b[:, 1] += b[:, 0] + target.float() return a, b, c + ###################################################################### -def create_sequences_pairs(train = False): +# + + +def create_sequences_pairs(train=False): nb, length = 10000, 1024 noise_level = 2e-2 - ha = torch.randint(args.nb_classes, (nb, ), device = device) + 1 + ha = torch.randint(args.nb_classes, (nb,), device=device) + 1 if args.independent: - hb = torch.randint(args.nb_classes, (nb, ), device = device) + hb = torch.randint(args.nb_classes, (nb,), device=device) else: hb = ha - pos = torch.empty(nb, device = device).uniform_(0.0, 0.9) - a = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) + pos = torch.empty(nb, device=device).uniform_(0.0, 0.9) + a = torch.linspace(0, 1, length, device=device).view(1, -1).expand(nb, -1) a = a - pos.view(nb, 1) a = (a >= 0).float() * torch.exp(-a * math.log(2) / 0.1) a = a * ha.float().view(-1, 1).expand_as(a) / (1 + args.nb_classes) noise = a.new(a.size()).normal_(0, noise_level) a = a + noise - pos = torch.empty(nb, device = device).uniform_(0.0, 0.5) - b1 = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) + pos = torch.empty(nb, device=device).uniform_(0.0, 0.5) + b1 = torch.linspace(0, 1, length, device=device).view(1, -1).expand(nb, -1) b1 = b1 - pos.view(nb, 1) b1 = (b1 >= 0).float() * torch.exp(-b1 * math.log(2) / 0.1) * 0.25 pos = pos + hb.float() / (args.nb_classes + 1) * 0.5 # pos += pos.new(hb.size()).uniform_(0.0, 0.01) - b2 = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) + b2 = torch.linspace(0, 1, length, device=device).view(1, -1).expand(nb, -1) b2 = b2 - pos.view(nb, 1) b2 = (b2 >= 0).float() * torch.exp(-b2 * math.log(2) / 0.1) * 0.25 @@ -229,34 +235,35 @@ def create_sequences_pairs(train = False): noise = b.new(b.size()).normal_(0, noise_level) b = b + noise - # a = (a - a.mean()) / a.std() - # b = (b - b.mean()) / b.std() - return a, b, ha + ###################################################################### + class NetForImagePair(nn.Module): def __init__(self): - super(NetForImagePair, self).__init__() + super().__init__() self.features_a = nn.Sequential( - nn.Conv2d(1, 16, kernel_size = 5), - nn.MaxPool2d(3), nn.ReLU(), - nn.Conv2d(16, 32, kernel_size = 5), - nn.MaxPool2d(2), nn.ReLU(), + nn.Conv2d(1, 16, kernel_size=5), + nn.MaxPool2d(3), + nn.ReLU(), + nn.Conv2d(16, 32, kernel_size=5), + nn.MaxPool2d(2), + nn.ReLU(), ) self.features_b = nn.Sequential( - nn.Conv2d(1, 16, kernel_size = 5), - nn.MaxPool2d(3), nn.ReLU(), - nn.Conv2d(16, 32, kernel_size = 5), - nn.MaxPool2d(2), nn.ReLU(), + nn.Conv2d(1, 16, kernel_size=5), + nn.MaxPool2d(3), + nn.ReLU(), + nn.Conv2d(16, 32, kernel_size=5), + nn.MaxPool2d(2), + nn.ReLU(), ) self.fully_connected = nn.Sequential( - nn.Linear(256, 200), - nn.ReLU(), - nn.Linear(200, 1) + nn.Linear(256, 200), nn.ReLU(), nn.Linear(200, 1) ) def forward(self, a, b): @@ -265,28 +272,33 @@ class NetForImagePair(nn.Module): x = torch.cat((a, b), 1) return self.fully_connected(x) + ###################################################################### + class NetForImageValuesPair(nn.Module): def __init__(self): - super(NetForImageValuesPair, self).__init__() + super().__init__() self.features_a = nn.Sequential( - nn.Conv2d(1, 16, kernel_size = 5), - nn.MaxPool2d(3), nn.ReLU(), - nn.Conv2d(16, 32, kernel_size = 5), - nn.MaxPool2d(2), nn.ReLU(), + nn.Conv2d(1, 16, kernel_size=5), + nn.MaxPool2d(3), + nn.ReLU(), + nn.Conv2d(16, 32, kernel_size=5), + nn.MaxPool2d(2), + nn.ReLU(), ) self.features_b = nn.Sequential( - nn.Linear(2, 32), nn.ReLU(), - nn.Linear(32, 32), nn.ReLU(), - nn.Linear(32, 128), nn.ReLU(), + nn.Linear(2, 32), + nn.ReLU(), + nn.Linear(32, 32), + nn.ReLU(), + nn.Linear(32, 128), + nn.ReLU(), ) self.fully_connected = nn.Sequential( - nn.Linear(256, 200), - nn.ReLU(), - nn.Linear(200, 1) + nn.Linear(256, 200), nn.ReLU(), nn.Linear(200, 1) ) def forward(self, a, b): @@ -295,30 +307,31 @@ class NetForImageValuesPair(nn.Module): x = torch.cat((a, b), 1) return self.fully_connected(x) + ###################################################################### -class NetForSequencePair(nn.Module): +class NetForSequencePair(nn.Module): def feature_model(self): kernel_size = 11 pooling_size = 4 - return nn.Sequential( - nn.Conv1d( 1, self.nc, kernel_size = kernel_size), + return nn.Sequential( + nn.Conv1d(1, self.nc, kernel_size=kernel_size), nn.AvgPool1d(pooling_size), nn.LeakyReLU(), - nn.Conv1d(self.nc, self.nc, kernel_size = kernel_size), + nn.Conv1d(self.nc, self.nc, kernel_size=kernel_size), nn.AvgPool1d(pooling_size), nn.LeakyReLU(), - nn.Conv1d(self.nc, self.nc, kernel_size = kernel_size), + nn.Conv1d(self.nc, self.nc, kernel_size=kernel_size), nn.AvgPool1d(pooling_size), nn.LeakyReLU(), - nn.Conv1d(self.nc, self.nc, kernel_size = kernel_size), + nn.Conv1d(self.nc, self.nc, kernel_size=kernel_size), nn.AvgPool1d(pooling_size), nn.LeakyReLU(), ) def __init__(self): - super(NetForSequencePair, self).__init__() + super().__init__() self.nc = 32 self.nh = 256 @@ -327,9 +340,7 @@ class NetForSequencePair(nn.Module): self.features_b = self.feature_model() self.fully_connected = nn.Sequential( - nn.Linear(2 * self.nc, self.nh), - nn.ReLU(), - nn.Linear(self.nh, 1) + nn.Linear(2 * self.nc, self.nh), nn.ReLU(), nn.Linear(self.nh, 1) ) def forward(self, a, b): @@ -344,17 +355,18 @@ class NetForSequencePair(nn.Module): x = torch.cat((a.view(a.size(0), -1), b.view(b.size(0), -1)), 1) return self.fully_connected(x) + ###################################################################### -if args.data == 'image_pair': +if args.data == "image_pair": create_pairs = create_image_pairs model = NetForImagePair() -elif args.data == 'image_values_pair': +elif args.data == "image_values_pair": create_pairs = create_image_values_pairs model = NetForImageValuesPair() -elif args.data == 'sequence_pair': +elif args.data == "sequence_pair": create_pairs = create_sequences_pairs model = NetForSequencePair() @@ -362,65 +374,70 @@ elif args.data == 'sequence_pair': ## Save for figures a, b, c = create_pairs() for k in range(10): - file = open(f'train_{k:02d}.dat', 'w') + file = open(f"train_{k:02d}.dat", "w") for i in range(a.size(1)): - file.write(f'{a[k, i]:f} {b[k,i]:f}\n') + file.write(f"{a[k, i]:f} {b[k,i]:f}\n") file.close() ###################### else: - raise Exception('Unknown data ' + args.data) + raise Exception("Unknown data " + args.data) ###################################################################### # Train -print(f'nb_parameters {sum(x.numel() for x in model.parameters())}') +print(f"nb_parameters {sum(x.numel() for x in model.parameters())}") model.to(device) -input_a, input_b, classes = create_pairs(train = True) +input_a, input_b, classes = create_pairs(train=True) for e in range(args.nb_epochs): - - optimizer = torch.optim.Adam(model.parameters(), lr = args.learning_rate) + optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) input_br = input_b[torch.randperm(input_b.size(0))] acc_mi = 0.0 - for batch_a, batch_b, batch_br in zip(input_a.split(args.batch_size), - input_b.split(args.batch_size), - input_br.split(args.batch_size)): - mi = model(batch_a, batch_b).mean() - model(batch_a, batch_br).exp().mean().log() + for batch_a, batch_b, batch_br in zip( + input_a.split(args.batch_size), + input_b.split(args.batch_size), + input_br.split(args.batch_size), + ): + mi = ( + model(batch_a, batch_b).mean() - model(batch_a, batch_br).exp().mean().log() + ) acc_mi += mi.item() - loss = - mi + loss = -mi optimizer.zero_grad() loss.backward() optimizer.step() - acc_mi /= (input_a.size(0) // args.batch_size) + acc_mi /= input_a.size(0) // args.batch_size - print(f'{e+1} {acc_mi / math.log(2):.04f} {entropy(classes) / math.log(2):.04f}') + print(f"{e+1} {acc_mi / math.log(2):.04f} {entropy(classes) / math.log(2):.04f}") sys.stdout.flush() ###################################################################### # Test -input_a, input_b, classes = create_pairs(train = False) +input_a, input_b, classes = create_pairs(train=False) input_br = input_b[torch.randperm(input_b.size(0))] acc_mi = 0.0 -for batch_a, batch_b, batch_br in zip(input_a.split(args.batch_size), - input_b.split(args.batch_size), - input_br.split(args.batch_size)): +for batch_a, batch_b, batch_br in zip( + input_a.split(args.batch_size), + input_b.split(args.batch_size), + input_br.split(args.batch_size), +): mi = model(batch_a, batch_b).mean() - model(batch_a, batch_br).exp().mean().log() acc_mi += mi.item() -acc_mi /= (input_a.size(0) // args.batch_size) +acc_mi /= input_a.size(0) // args.batch_size -print(f'test {acc_mi / math.log(2):.04f} {entropy(classes) / math.log(2):.04f}') +print(f"test {acc_mi / math.log(2):.04f} {entropy(classes) / math.log(2):.04f}") ######################################################################