X-Git-Url: https://www.fleuret.org/cgi-bin/gitweb/gitweb.cgi?p=pytorch.git;a=blobdiff_plain;f=minidiffusion.py;h=a3ffda008ef7672ebbe5d98246a21113cd2030b1;hp=066cbbbe1fa365458ea163bea0e64e1cd2787c74;hb=05b9b133a45ac9bd5abe6f8b6d29095f9c82797a;hpb=ca897077ed89fbc3c7e8d812ad262146a0c72b71 diff --git a/minidiffusion.py b/minidiffusion.py index 066cbbb..a3ffda0 100755 --- a/minidiffusion.py +++ b/minidiffusion.py @@ -13,22 +13,25 @@ import torch, torchvision from torch import nn from torch.nn import functional as F -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") -print(f'device {device}') +print(f"device {device}") ###################################################################### + def sample_gaussian_mixture(nb): p, std = 0.3, 0.2 result = torch.randn(nb, 1) * std result = result + torch.sign(torch.rand(result.size()) - p) / 2 return result + def sample_ramp(nb): result = torch.min(torch.rand(nb, 1), torch.rand(nb, 1)) return result + def sample_two_discs(nb): a = torch.rand(nb) * math.pi * 2 b = torch.rand(nb).sqrt() @@ -39,6 +42,7 @@ def sample_two_discs(nb): result[:, 1] = a.sin() * b - 0.5 + q return result + def sample_disc_grid(nb): a = torch.rand(nb) * math.pi * 2 b = torch.rand(nb).sqrt() @@ -51,6 +55,7 @@ def sample_disc_grid(nb): result[:, 1] = a.sin() * b + r return result + def sample_spiral(nb): u = torch.rand(nb) rho = u * 0.65 + 0.25 + torch.rand(nb) * 0.15 @@ -60,13 +65,16 @@ def sample_spiral(nb): result[:, 1] = theta.sin() * rho return result + def sample_mnist(nb): - train_set = torchvision.datasets.MNIST(root = './data/', train = True, download = True) + train_set = torchvision.datasets.MNIST(root="./data/", train=True, download=True) result = train_set.data[:nb].to(device).view(-1, 1, 28, 28).float() return result + samplers = { - f.__name__.removeprefix('sample_') : f for f in [ + f.__name__.removeprefix("sample_"): f + for f in [ sample_gaussian_mixture, sample_ramp, sample_two_discs, @@ -79,45 +87,40 @@ samplers = { ###################################################################### parser = argparse.ArgumentParser( - description = '''A minimal implementation of Jonathan Ho, Ajay Jain, Pieter Abbeel + description="""A minimal implementation of Jonathan Ho, Ajay Jain, Pieter Abbeel "Denoising Diffusion Probabilistic Models" (2020) -https://arxiv.org/abs/2006.11239''', - - formatter_class = argparse.ArgumentDefaultsHelpFormatter +https://arxiv.org/abs/2006.11239""", + formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) -parser.add_argument('--seed', - type = int, default = 0, - help = 'Random seed, < 0 is no seeding') +parser.add_argument( + "--seed", type=int, default=0, help="Random seed, < 0 is no seeding" +) -parser.add_argument('--nb_epochs', - type = int, default = 100, - help = 'How many epochs') +parser.add_argument("--nb_epochs", type=int, default=100, help="How many epochs") -parser.add_argument('--batch_size', - type = int, default = 25, - help = 'Batch size') +parser.add_argument("--batch_size", type=int, default=25, help="Batch size") -parser.add_argument('--nb_samples', - type = int, default = 25000, - help = 'Number of training examples') +parser.add_argument( + "--nb_samples", type=int, default=25000, help="Number of training examples" +) -parser.add_argument('--learning_rate', - type = float, default = 1e-3, - help = 'Learning rate') +parser.add_argument("--learning_rate", type=float, default=1e-3, help="Learning rate") -parser.add_argument('--ema_decay', - type = float, default = 0.9999, - help = 'EMA decay, <= 0 is no EMA') +parser.add_argument( + "--ema_decay", type=float, default=0.9999, help="EMA decay, <= 0 is no EMA" +) -data_list = ', '.join( [ str(k) for k in samplers ]) +data_list = ", ".join([str(k) for k in samplers]) -parser.add_argument('--data', - type = str, default = 'gaussian_mixture', - help = f'Toy data-set to use: {data_list}') +parser.add_argument( + "--data", + type=str, + default="gaussian_mixture", + help=f"Toy data-set to use: {data_list}", +) -parser.add_argument('--no_window', - action='store_true', default = False) +parser.add_argument("--no_window", action="store_true", default=False) args = parser.parse_args() @@ -131,11 +134,12 @@ if args.seed >= 0: ###################################################################### + class EMA: def __init__(self, model, decay): self.model = model self.decay = decay - self.mem = { } + self.mem = {} with torch.no_grad(): for p in model.parameters(): self.mem[p] = p.clone() @@ -150,11 +154,13 @@ class EMA: for p in self.model.parameters(): p.copy_(self.mem[p]) + ###################################################################### # Gets a pair (x, t) and appends t (scalar or 1d tensor) to x as an # additional dimension / channel + class TimeAppender(nn.Module): def __init__(self): super().__init__() @@ -163,9 +169,10 @@ class TimeAppender(nn.Module): x, t = u if not torch.is_tensor(t): t = x.new_full((x.size(0),), t) - t = t.view((-1,) + (1,) * (x.dim() - 1)).expand_as(x[:,:1]) + t = t.view((-1,) + (1,) * (x.dim() - 1)).expand_as(x[:, :1]) return torch.cat((x, t), 1) + class ConvNet(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() @@ -174,29 +181,30 @@ class ConvNet(nn.Module): self.core = nn.Sequential( TimeAppender(), - nn.Conv2d(in_channels + 1, nc, ks, padding = ks//2), + nn.Conv2d(in_channels + 1, nc, ks, padding=ks // 2), nn.ReLU(), - nn.Conv2d(nc, nc, ks, padding = ks//2), + nn.Conv2d(nc, nc, ks, padding=ks // 2), nn.ReLU(), - nn.Conv2d(nc, nc, ks, padding = ks//2), + nn.Conv2d(nc, nc, ks, padding=ks // 2), nn.ReLU(), - nn.Conv2d(nc, nc, ks, padding = ks//2), + nn.Conv2d(nc, nc, ks, padding=ks // 2), nn.ReLU(), - nn.Conv2d(nc, nc, ks, padding = ks//2), + nn.Conv2d(nc, nc, ks, padding=ks // 2), nn.ReLU(), - nn.Conv2d(nc, out_channels, ks, padding = ks//2), + nn.Conv2d(nc, out_channels, ks, padding=ks // 2), ) def forward(self, u): return self.core(u) + ###################################################################### # Data try: train_input = samplers[args.data](args.nb_samples).to(device) except KeyError: - print(f'unknown data {args.data}') + print(f"unknown data {args.data}") exit(1) train_mean, train_std = train_input.mean(), train_input.std() @@ -219,52 +227,53 @@ if train_input.dim() == 2: ) elif train_input.dim() == 4: - model = ConvNet(train_input.size(1), train_input.size(1)) model.to(device) -print(f'nb_parameters {sum([ p.numel() for p in model.parameters() ])}') +print(f"nb_parameters {sum([ p.numel() for p in model.parameters() ])}") ###################################################################### # Generate -def generate(size, T, alpha, alpha_bar, sigma, model, train_mean, train_std): +def generate(size, T, alpha, alpha_bar, sigma, model, train_mean, train_std): with torch.no_grad(): + x = torch.randn(size, device=device) - x = torch.randn(size, device = device) - - for t in range(T-1, -1, -1): + for t in range(T - 1, -1, -1): output = model((x, t / (T - 1) - 0.5)) z = torch.zeros_like(x) if t == 0 else torch.randn_like(x) - x = 1/torch.sqrt(alpha[t]) \ - * (x - (1-alpha[t]) / torch.sqrt(1-alpha_bar[t]) * output) \ + x = ( + 1 + / torch.sqrt(alpha[t]) + * (x - (1 - alpha[t]) / torch.sqrt(1 - alpha_bar[t]) * output) + sigma[t] * z + ) x = x * train_std + train_mean return x + ###################################################################### # Train T = 1000 -beta = torch.linspace(1e-4, 0.02, T, device = device) +beta = torch.linspace(1e-4, 0.02, T, device=device) alpha = 1 - beta alpha_bar = alpha.log().cumsum(0).exp() sigma = beta.sqrt() -ema = EMA(model, decay = args.ema_decay) if args.ema_decay > 0 else None +ema = EMA(model, decay=args.ema_decay) if args.ema_decay > 0 else None for k in range(args.nb_epochs): - acc_loss = 0 - optimizer = torch.optim.Adam(model.parameters(), lr = args.learning_rate) + optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) for x0 in train_input.split(args.batch_size): x0 = (x0 - train_mean) / train_std - t = torch.randint(T, (x0.size(0),) + (1,) * (x0.dim() - 1), device = x0.device) + t = torch.randint(T, (x0.size(0),) + (1,) * (x0.dim() - 1), device=x0.device) eps = torch.randn_like(x0) xt = torch.sqrt(alpha_bar[t]) * x0 + torch.sqrt(1 - alpha_bar[t]) * eps output = model((xt, t / (T - 1) - 0.5)) @@ -275,11 +284,13 @@ for k in range(args.nb_epochs): loss.backward() optimizer.step() - if ema is not None: ema.step() + if ema is not None: + ema.step() - print(f'{k} {acc_loss / train_input.size(0)}') + print(f"{k} {acc_loss / train_input.size(0)}") -if ema is not None: ema.copy_to_model() +if ema is not None: + ema.copy_to_model() ###################################################################### # Plot @@ -289,100 +300,107 @@ model.eval() ######################################## # Nx1 -> histogram if train_input.dim() == 2 and train_input.size(1) == 1: - fig = plt.figure() fig.set_figheight(5) fig.set_figwidth(8) ax = fig.add_subplot(1, 1, 1) - x = generate((10000, 1), T, alpha, alpha_bar, sigma, - model, train_mean, train_std) + x = generate((10000, 1), T, alpha, alpha_bar, sigma, model, train_mean, train_std) ax.set_xlim(-1.25, 1.25) ax.spines.right.set_visible(False) ax.spines.top.set_visible(False) - d = train_input.flatten().detach().to('cpu').numpy() - ax.hist(d, 25, (-1, 1), - density = True, - histtype = 'bar', edgecolor = 'white', color = 'lightblue', label = 'Train') + d = train_input.flatten().detach().to("cpu").numpy() + ax.hist( + d, + 25, + (-1, 1), + density=True, + histtype="bar", + edgecolor="white", + color="lightblue", + label="Train", + ) - d = x.flatten().detach().to('cpu').numpy() - ax.hist(d, 25, (-1, 1), - density = True, - histtype = 'step', color = 'red', label = 'Synthesis') + d = x.flatten().detach().to("cpu").numpy() + ax.hist( + d, 25, (-1, 1), density=True, histtype="step", color="red", label="Synthesis" + ) - ax.legend(frameon = False, loc = 2) + ax.legend(frameon=False, loc=2) - filename = f'minidiffusion_{args.data}.pdf' - print(f'saving {filename}') - fig.savefig(filename, bbox_inches='tight') + filename = f"minidiffusion_{args.data}.pdf" + print(f"saving {filename}") + fig.savefig(filename, bbox_inches="tight") - if not args.no_window and hasattr(plt.get_current_fig_manager(), 'window'): + if not args.no_window and hasattr(plt.get_current_fig_manager(), "window"): plt.get_current_fig_manager().window.setGeometry(2, 2, 1024, 768) plt.show() ######################################## # Nx2 -> scatter plot elif train_input.dim() == 2 and train_input.size(1) == 2: - fig = plt.figure() fig.set_figheight(6) fig.set_figwidth(6) ax = fig.add_subplot(1, 1, 1) - x = generate((1000, 2), T, alpha, alpha_bar, sigma, - model, train_mean, train_std) + x = generate((1000, 2), T, alpha, alpha_bar, sigma, model, train_mean, train_std) ax.set_xlim(-1.5, 1.5) ax.set_ylim(-1.5, 1.5) - ax.set(aspect = 1) + ax.set(aspect=1) ax.spines.right.set_visible(False) ax.spines.top.set_visible(False) - d = train_input[:x.size(0)].detach().to('cpu').numpy() - ax.scatter(d[:, 0], d[:, 1], - s = 2.5, color = 'gray', label = 'Train') + d = train_input[: x.size(0)].detach().to("cpu").numpy() + ax.scatter(d[:, 0], d[:, 1], s=2.5, color="gray", label="Train") - d = x.detach().to('cpu').numpy() - ax.scatter(d[:, 0], d[:, 1], - s = 2.0, color = 'red', label = 'Synthesis') + d = x.detach().to("cpu").numpy() + ax.scatter(d[:, 0], d[:, 1], s=2.0, color="red", label="Synthesis") - ax.legend(frameon = False, loc = 2) + ax.legend(frameon=False, loc=2) - filename = f'minidiffusion_{args.data}.pdf' - print(f'saving {filename}') - fig.savefig(filename, bbox_inches='tight') + filename = f"minidiffusion_{args.data}.pdf" + print(f"saving {filename}") + fig.savefig(filename, bbox_inches="tight") - if not args.no_window and hasattr(plt.get_current_fig_manager(), 'window'): + if not args.no_window and hasattr(plt.get_current_fig_manager(), "window"): plt.get_current_fig_manager().window.setGeometry(2, 2, 1024, 768) plt.show() ######################################## # NxCxHxW -> image elif train_input.dim() == 4: + x = generate( + (128,) + train_input.size()[1:], + T, + alpha, + alpha_bar, + sigma, + model, + train_mean, + train_std, + ) - x = generate((128,) + train_input.size()[1:], T, alpha, alpha_bar, sigma, - model, train_mean, train_std) - - x = torchvision.utils.make_grid(x.clamp(min = 0, max = 255), - nrow = 16, padding = 1, pad_value = 64) - x = F.pad(x, pad = (2, 2, 2, 2), value = 64)[None] + x = torchvision.utils.make_grid( + x.clamp(min=0, max=255), nrow=16, padding=1, pad_value=64 + ) + x = F.pad(x, pad=(2, 2, 2, 2), value=64)[None] - t = torchvision.utils.make_grid(train_input[:128], - nrow = 16, padding = 1, pad_value = 64) - t = F.pad(t, pad = (2, 2, 2, 2), value = 64)[None] + t = torchvision.utils.make_grid(train_input[:128], nrow=16, padding=1, pad_value=64) + t = F.pad(t, pad=(2, 2, 2, 2), value=64)[None] result = 1 - torch.cat((t, x), 2) / 255 - filename = f'minidiffusion_{args.data}.png' - print(f'saving {filename}') + filename = f"minidiffusion_{args.data}.png" + print(f"saving {filename}") torchvision.utils.save_image(result, filename) else: - - print(f'cannot plot result of size {train_input.size()}') + print(f"cannot plot result of size {train_input.size()}") ######################################################################