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Object detection and segmentation

16 Pinheiro, Lin, Collobert, Dollár

Fig. 8: More selected qualitative results (see also Figure 4).

(Pinheiro et al., 2016)
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Notes

Deep learning is now used for virtually any soft-
ware dealing with complex structured real-world
signals.
Semantic segmentation is the task of labeling
individual pixels with the class of the object it
belongs to, and may also aims at differentiating
different instances of the same class (e.g. person,
car).



Reinforcement learning

Self-trained, plays 49 games at human level.

(Mnih et al., 2015)
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Notes

In reinforcement learning, the goal is to predict
the best action to do given the perception of an
agent to reach a distant goal.
In the work of Mnih et al. (2015), the machine is
trained to play Atari games. It is given the input
image, and the model predicts which button to
push on the joystick. In this work, the machine
is able to play at human level.



Strategy games

March 2016, 4-1 against a 9-dan professional without handicap.

(Silver et al., 2016)
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Notes

In 2016, DeepMind’s AlphaGo beat Lee Sedol,
one of the best Go players in the world. This was
a surprising and shocking result even for experts
from the field of Go algorithms, who did not
expect it before at least one more decade.
This algorithm combines a stochastic tree search
with a neural network to estimate the value of a
move. AlphaGo was superseded by AlphaGoZero
(Silver et al., 2017), which is trained against
itself without data from human games, only from
the game’s rules, and extended to AlphaZero
(Schrittwieser et al., 2019) which can be similarly
trained to play chess and shogi (Japanese chess).



Translation

“The reason Boeing are doing this is to cram more seats in to make their plane
more competitive with our products,” said Kevin Keniston, head of passenger
comfort at Europe’s Airbus.

➙
“La raison pour laquelle Boeing fait cela est de créer plus de sièges pour rendre
son avion plus compétitif avec nos produits”, a déclaré Kevin Keniston, chef
du confort des passagers chez Airbus.

When asked about this, an official of the American administration replied:
“The United States is not conducting electronic surveillance aimed at offices
of the World Bank and IMF in Washington.”

➙
Interrogé à ce sujet, un fonctionnaire de l’administration américaine a répondu:
“Les États-Unis n’effectuent pas de surveillance électronique à l’intention des
bureaux de la Banque mondiale et du FMI à Washington”

(Wu et al., 2016)
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Notes

Translation in natural language processing con-
sists in automatically translate a set of sentences
from one language to another language.



Question answering

I: Jane went to the hallway.
I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden

I: It started boring, but then it got interesting.
Q: What's the sentiment?
A: positive

(Kumar et al., 2015)
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Notes

In the task of question answering, the software
is given an input text at the end of which it is
asked a question about it.
This task requires a form of memory, and the
ability to connect nouns, actions, places, etc.
The potential application would be AI-based as-
sistants such as chatbots.



Auto-captioning

Figure 5. A selection of evaluation results, grouped by human rating.

4.3.7 Analysis of Embeddings

In order to represent the previous word St−1 as input to
the decoding LSTM producing St, we use word embedding
vectors [22], which have the advantage of being indepen-
dent of the size of the dictionary (contrary to a simpler one-
hot-encoding approach). Furthermore, these word embed-
dings can be jointly trained with the rest of the model. It
is remarkable to see how the learned representations have
captured some semantic from the statistics of the language.
Table 4.3.7 shows, for a few example words, the nearest
other words found in the learned embedding space.

Note how some of the relationships learned by the model
will help the vision component. Indeed, having “horse”,
“pony”, and “donkey” close to each other will encourage the
CNN to extract features that are relevant to horse-looking
animals. We hypothesize that, in the extreme case where
we see very few examples of a class (e.g., “unicorn”), its
proximity to other word embeddings (e.g., “horse”) should
provide a lot more information that would be completely
lost with more traditional bag-of-words based approaches.

5. Conclusion

We have presented NIC, an end-to-end neural network
system that can automatically view an image and generate

Word Neighbors
car van, cab, suv, vehicule, jeep
boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer computers, pc, crt, chip, compute

Table 6. Nearest neighbors of a few example words

a reasonable description in plain English. NIC is based on
a convolution neural network that encodes an image into a
compact representation, followed by a recurrent neural net-
work that generates a corresponding sentence. The model is
trained to maximize the likelihood of the sentence given the
image. Experiments on several datasets show the robust-
ness of NIC in terms of qualitative results (the generated
sentences are very reasonable) and quantitative evaluations,
using either ranking metrics or BLEU, a metric used in ma-
chine translation to evaluate the quality of generated sen-
tences. It is clear from these experiments that, as the size
of the available datasets for image description increases, so
will the performance of approaches like NIC. Furthermore,
it will be interesting to see how one can use unsupervised
data, both from images alone and text alone, to improve im-
age description approaches.

(Vinyals et al., 2015)
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Notes

Auto-captioning is a mix of image and natural
language processing: given an input image, the
system outputs a piece of text describing its con-
tent.
Auto-captioning has many applications such as
retrieving an image from its description, or auto-
captioning of images on social medias for blind
and visually impaired people.



Image generation

(Brock et al., 2018)
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Notes

Deep models are also able to learn distributions
of signals such as images, sounds or text and
provide means to sample new examples.



Text generation

System Prompt (human-written)

In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English.

Model Completion (machine-written, 10 tries)

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

(Radford et al., 2019)
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Protein folding prediction

(Jumper et al., 2021)
Plasma confinement

(Degrave et al., 2022)
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Why does it work now?
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The success of deep learning is multi-factorial:

• Five decades of research in machine learning,

• CPUs/GPUs/storage developed for other purposes,

• lots of data from “the internet”,

• tools and culture of collaborative and reproducible science,

• resources and efforts from large corporations.
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Notes

The reason of the success of deep learning since
2012 is multi-factorial.
There were five decades of research in machine
learning which gave a clear picture of the key
theoretical issues in learning theory, and powerful
tools in data analysis, optimization, and signal
processing.
There were amazing developments of processing
hardware (CPUs, GPUs), and storage devices,
which were originally made for other applications.
The rise of social media led to the availability
of a huge amount of training data. Crowdsourc-
ing platforms, such as Amazon Mechanical Turk,

allowed people to perform annotations tasks to
train models.
Many tools of machine learning are open source,
and are deeply rooted in the culture of collabora-
tive and reproducible science, which allow people
to reuse efficiently what has previously been done
(git, linux, licenses, distribution, etc.).
There was a change in the world of corporations:
we went from a situation where machine learning
would have been useful for corporations only if
it completely solved a given task, to a situation
where there were a financial incentive to improve
machine learning even marginally (“click rate”).



Five decades of research in ML provided

• a taxonomy of ML concepts (classification, generative models, clustering, kernels,
linear embeddings, etc.),

• a sound statistical formalization (Bayesian estimation, PAC),

• a clear picture of fundamental issues (bias/variance dilemma, VC dimension,
generalization bounds, etc.),

• a good understanding of optimization issues,

• efficient large-scale algorithms.

François Fleuret Deep learning / 1.2. Current applications and success 12 / 25

Notes

Research in machine learning over the past fifty
years brought a taxonomy of principles and meth-
ods which predate deep learning.
All these concepts were cast in a sound statis-
tical formalization and help understand of what
models work and what generalization capabilities
they can have.
The research also brought a clear picture of fun-
damental issues which arise when training models.
In particular, the bias/variance dilemma which
states that when the capacity of the model in-

creases, more data is needed to train it.
Concept such as the Vapnik-Chervonenkis dimen-
sion helped to characterize the complexity of a
model beyond its number of parameters.
Machine learning is closely related to the field of
optimization which provides tools to train in very
high dimensions spaces, and techniques such as
regularization. And it also has strong connection
with computer science to make algorithms scale
up to very large data sets.



From a practical perspective, deep learning

• lessens the need for a deep mathematical grasp,

• makes the design of large learning architectures a system/software development
task,

• allows to leverage modern hardware (clusters of GPUs),

• does not plateau when using more data,

• makes large trained networks a commodity.
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Notes

Deep learning reduces the need for a strong math-
ematical background: a high level understanding
is enough to start using frameworks (PyTorch,
Tensorflow, etc.).
An important part of deep learning now is dealing
with software issues, that is how to make the code
run. The design of models is done at a higher
level of combining existing modules, rather than
implementing the modules themselves in detail
at a low level. These pre-existing implementation
and tools also allow to use dedicated hardware
and large-scale clusters in a transparent manner.

An important aspect of deep learning is its ability
to leverage very large data sets, without plateau-
ing as usual machine learning methods. When
one has more data, one can make the models
bigger easily (with more parameters), and the
performance increases.
A central phenomenon of deep learning is that
a trained predictor is an asset in itself. It has
become commonplace that people re-use models
trained by others to start their task. The frontier
between designing algorithms that train networks,
and producing trained networks is getting blurry.
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TFlops (1012) Price GFlops per $
Intel Core i7-6700K 0.2 $275 0.7

Intel Core i9-7980XE 0.9 $1’999 0.5

AMD Ryzen 7 PRO 4750G 1.1 $640 1.7

NVIDIA GTX 2080 Ti 14.2 $999 14.2

NVIDIA GTX 3090 35.5 $1’500 23.7

AMD Radeon RX 6900 XT 23.0 $999 23.0
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Notes

The graph shows the number of flops (floating
point operations per second, log scale) per USD
as a function of decades. The increase is exponen-
tial and contributed to the rise of deep learning.
A standard gaming GPU can now perform ≃ 20
trillions (1012) operations per second.
Note that comparing raw numbers can be mislead-
ing, since actual performance for deep-learning
strongly depends on the drivers and libraries.



Validation loss for language models vs. training compute.

Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy
validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
observed in [KMH+20] continues for an additional two orders of magnitude with only small deviations from the
predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.

Setting PTB

SOTA (Zero-Shot) 35.8a

GPT-3 Zero-Shot 20.5

Table 3.1: Zero-shot results on PTB language modeling dataset. Many other common language modeling datasets
are omitted because they are derived from Wikipedia or other sources which are included in GPT-3’s training data.
a[RWC+19]

3.1 Language Modeling, Cloze, and Completion Tasks

In this section we test GPT-3’s performance on the traditional task of language modeling, as well as related tasks
that involve predicting a single word of interest, completing a sentence or paragraph, or choosing between possible
completions of a piece of text.

3.1.1 Language Modeling

We calculate zero-shot perplexity on the Penn Tree Bank (PTB) [MKM+94] dataset measured in [RWC+19]. We omit
the 4 Wikipedia-related tasks in that work because they are entirely contained in our training data, and we also omit the
one-billion word benchmark due to a high fraction of the dataset being contained in our training set. PTB escapes these
issues due to predating the modern internet. Our largest model sets a new SOTA on PTB by a substantial margin of 15
points, achieving a perplexity of 20.50. Note that since PTB is a traditional language modeling dataset it does not have
a clear separation of examples to define one-shot or few-shot evaluation around, so we measure only zero-shot.

3.1.2 LAMBADA

The LAMBADA dataset [PKL+16] tests the modeling of long-range dependencies in text – the model is asked to
predict the last word of sentences which require reading a paragraph of context. It has recently been suggested that the
continued scaling of language models is yielding diminishing returns on this difficult benchmark. [BHT+20] reflect on
the small 1.5% improvement achieved by a doubling of model size between two recent state of the art results ([SPP+19]

11

(Brown et al., 2020)

François Fleuret Deep learning / 1.2. Current applications and success 15 / 25



3.1 The transition to Deep Learning

Consistent with the results from Amodei & Hernandez (2018), we find two very different trend regimes before and after
the advent of Deep Learning. Before then, the amount of compute required to train ML systems doubled once every 17
to 29 months. Subsequently, the overall trend speeds up and doubles every 4 to 9 months.

The trend in the Pre Deep Learning Era roughly matches Moore’s law, according to which transistor density doubles
roughly every two years (Moore, 1965) – often simplified to computational performance doubling every two years.

It is not clear when the Deep Learning Era starts3 — there are no noticeable discontinuities in the transition from the
Pre Deep Learning to the Deep Learning era. Moreover, our results barely change if we place the start of the Deep
Learning era in 2010 or in 2012, see Table 3.
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 121

Figure 2: Trends in training compute of n = 121 milestone ML systems between 1952 and 2022. Notice the change of slope in the
trends circa 2010.

Period Outliers Scale (FLOPs) Slope Doubling time R²

1952-2009 All models (n = 19) 3e+04 / 2e+14 0.2 OOMs/year [0.1; 0.2; 0.2] 21.3 months [16.2; 21.3; 31.3] 0.77

1952-2011 All models (n = 26) 1e+04 / 3e+15 0.2 OOMs/year [0.1; 0.2; 0.2] 19.6 months [15.6; 19.4; 25.0] 0.83

All models (n = 98) 1e+15 / 6e+22 0.7 OOMs/year [0.6; 0.7; 0.7] 5.6 months [5.0; 5.6; 6.2] 0.70
2010-2022

Regular-scale (n = 77) 4e+14 / 2e+22 0.7 OOMs/year [0.6; 0.7; 0.7] 5.6 months [5.1; 5.6; 6.2] 0.78

All models (n = 91) 1e+17 / 6e+22 0.6 OOMs/year [0.5; 0.6; 0.7] 5.7 months [4.9; 5.7; 6.7] 0.58
2012-2022

Regular-scale (n = 72) 4e+16 / 2e+22 0.6 OOMs/year [0.5; 0.6; 0.7] 5.7 months [4.9; 5.7; 6.7] 0.69

Table 3: Log-linear regression results for ML models from 1952 to 2022.

3We discuss the start of the Deep Learning Era in more detail in Appendix D.

4

(Sevilla et al., 2022)
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Notes

The graph above represents the computation re-
quired to train several states-of-the-art models
vs. the year.
We observe an exponential increase in the compu-
tation required to train models, mostly because
researchers solve more complex tasks, but also
because the computation power is available.



3.2 Trends in the Large-Scale era

Our data suggests that around 2015-2016 a new trend of large-scale models emerged, see Figure 3. This new trend
began with AlphaGo in late 2015 and continues up to the present day. These large-scale models were trained by large
corporations, whose larger training budgets presumably enabled them to break the previous trend.

Note that we made an intuitive decision in deciding which systems belong to this new large-scale trend. We justified it
post hoc as the systems that exceed a certain Z-value threshold with respect to nearby models, see Appendix A for
details on our method. See Appendix F for discussion on what makes large-scale models categorically different. There
is room for alternative interpretations of the data.

Separately, the trend of regular-scale models continued unperturbed. This trend before and after 2016 is continuous
and has the same slope, doubling every 5 to 6 months, see Table 4.4

The trend of increasing compute in large-scale models is apparently slower, doubling every 9 to 10 months. Since we
have limited data on these models, the apparent slow-down might be the result of noise.5

Our results contrast with Amodei & Hernandez (2018), who find a much faster doubling period of 3.4 months between
2012 and 2018, and with Lyzhov (2021), who finds a much longer doubling period of >2 years between 2018 and 2020.
We make sense of these discrepancies by noting that their analyses have limited data samples and assume a single trend
6, while ours studies large-scale and regular-scale models separately. Since the large-scale trend only recently emerged,
previous analyses could not differentiate these two distinct trends.7
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Figure 3: Trends in training compute of n102 milestone ML systems between 2010 and 2022. Notice the emergence of a possible
new trend of large-scale models around 2016. The trend in the remaining models stays the same before and after 2016.

4Among other reasons, this reinforces our belief that the trend of large-scale models is a separate one.
5In Appendix G we discuss some possible causes for this potential slowdown. In Appendix B we also show that the trend is

equally fast before and after September 2015 if we look only at record-setting models.
7We discuss this in more depth in Appendix E.
7Arguably we should pay most attention to the most compute-intensive models overall – these are the ones most likely to advance

the frontier. We do so in Appendix B, where we look at trends in record-setting models and find results consistent with those
presented in this section.

5

(Sevilla et al., 2022)
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Notes

The graph above represents the computation re-
quired to train several states-of-the-art deep learn-
ing models vs. the year. These models are not
specific to one domain and come from computer
vision (AlexNet, VGG), natural language under-
standing (Seq2Seq, Neural Machine Translation),
and strategy games (AlphaZero).



Computer vision

Data-set Year Nb. images Size

MNIST (classification) 1998 60K 12Mb

Caltech 101 (classification) 2003 9.1K 130Mb

Caltech 256 (classification) 2007 30K 1.2Gb

CIFAR10 (classification) 2009 60K 160Mb

ImageNet (classification) 2012 1.2M 150Gb

MS-COCO (segmentation) 2015 200K 32Gb

Cityscape (segmentation) 2016 25K 60Gb

LAION-5B (multi-modal) 2022 5.85B 240Tb

Natural Language Processing

Data-set Year Size

SST2 (sentiment analysis) 2013 20Mb

WMT-18 (translation) 2018 7Gb

OSCAR (language model) 2020 6Tb
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Notes

In parallel to the growth of the models and com-
putation means, data sets also increased enor-
mously.



The biggest lesson that can be read from 70 years of AI research is
that general methods that leverage computation are ultimately the
most effective, and by a large margin.

(Richard Sutton, 2019)

Quantity has a Quality All Its Own.

(Thomas A. Callaghan Jr., 1979)
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Notes

One core reason of deep learning’s success is
purely quantitative: models have very large num-
ber of parameters, they require lots of computa-
tion, with very large training sets.
It is probably wrong to translate an interpreta-
tion of small networks to big ones. Models have
become so complicated that it is very hard to
have a grasp at what is really happening in detail
inside a network. It is likely that processing in
very large models qualitatively differs from the
processing in small ones.



Implementing a deep network, PyTorch
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Deep-learning development is usually done in a framework:

Language(s) License Main backer

PyTorch Python, C++ BSD Facebook

TensorFlow Python, C++ Apache Google

JAX Python Apache Google

MXNet Python, C++, R, Scala Apache Amazon

CNTK Python, C++ MIT Microsoft

Torch Lua BSD Facebook

Theano Python BSD U. of Montreal

Caffe C++ BSD 2 clauses U. of CA, Berkeley

A fast, low-level, compiled backend to access computation devices, combined with a
slow, high-level, interpreted language. Python has an incredible ecosystem and is used
across fields.
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Notes

Most deep learning frameworks consist of

• a backend in a low level language
(C/C++/CUDA) which directly interacts
with the hardware and the libraries which
control the hardware;

• a frontend in a high level language.
Python got very popular thanks to his
extremely rich ecosystem of libraries for
plotting, loading data formats, machine
learning, signal processing, etc.



We will use the PyTorch framework for our experiments (Paszke et al., 2019).

http://pytorch.org

“PyTorch is a python package that provides two high-level features:

• Tensor computation (like NumPy) with strong GPU acceleration

• Deep Neural Networks built on a tape-based autograd system”
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http://pytorch.org


MNIST data-set

28× 28 grayscale images, 60K train samples, 10K test samples.

(LeCun et al., 1998)
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Notes

MNIST is one of the most standard computer
vision data set published in 1998, and can be
seen as a minimal real-world image problem. A
good practice when designing a new method is
to benchmark it on this corpus to have a grasp
of how it behaves.



model = nn.Sequential(
nn.Conv2d( 1, 32, 5), nn.MaxPool2d(3), nn.ReLU(),
nn.Conv2d(32, 64, 5), nn.MaxPool2d(2), nn.ReLU(),
nn.Flatten(),
nn.Linear(256, 200), nn.ReLU(),
nn.Linear(200, 10)

)

nb_epochs, batch_size = 10, 100
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)

model.to(device)
criterion.to(device)
train_input, train_targets = train_input.to(device), train_targets.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)

for e in range(nb_epochs):
for input, targets in zip(train_input.split(batch_size),

train_targets.split(batch_size)):
output = model(input)
loss = criterion(output, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()

1

2

3

4

5

≃8s on a GTX1080, ≃1% test error
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Notes

Here is a minimal piece of code to train a network
for classifying MNIST images. This snippet of
code is shown here to give a sense of the amount
and complexity of code required, we will re-visit
in details all the aspects in the course:

1. The model is a sequence of pre-defined
PyTorch modules.

2. We define the parameters of the
optimization, including the choice of the
criterion that specified the quantity to

minimize, and the optimizer itself which is
the method we will use.

3. The data and the model are moved to the
device we want to use, usually a GPU.

4. The data set is normalized. We will see
that normalizing the data set is important
for faster and better training.

5. The training itself consist of several loops,
each going through all the data by “mini
batches” of samples.
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