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Object detection and segmentation

(Pinheiro et al., 2016)
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Notes

Deep learning is now used for virtually any soft-
ware dealing with complex structured real-world
signals.

Semantic segmentation is the task of labeling
individual pixels with the class of the object it
belongs to, and may also aims at differentiating
different instances of the same class (e.g. person,
car).



Reinforcement learning

Self-trained, plays 49 games at human level.

(Mnih et al., 2015)
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Notes

In reinforcement learning, the goal is to predict
the best action to do given the perception of an
agent to reach a distant goal.

In the work of Mnih et al. (2015), the machine is
trained to play Atari games. It is given the input
image, and the model predicts which button to
push on the joystick. In this work, the machine
is able to play at human level.



Strategy games
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AlphaGo

Google DeepMind

March 2016, 4-1 against a 9-dan professional without handicap.

(Silver et al., 2016)
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Notes

In 2016, DeepMind's AlphaGo beat Lee Sedol,
one of the best Go players in the world. This was
a surprising and shocking result even for experts
from the field of Go algorithms, who did not
expect it before at least one more decade.

This algorithm combines a stochastic tree search
with a neural network to estimate the value of a
move. AlphaGo was superseded by AlphaGoZero
(Silver et al., 2017), which is trained against
itself without data from human games, only from
the game’s rules, and extended to AlphaZero
(Schrittwieser et al., 2019) which can be similarly
trained to play chess and shogi (Japanese chess).



Translation

“The reason Boeing are doing this is to cram more seats in to make their plane
more competitive with our products,” said Kevin Keniston, head of passenger
comfort at Europe’s Airbus.

“La raison pour laquelle Boeing fait cela est de créer plus de sieéges pour rendre
=> son avion plus compétitif avec nos produits”, a déclaré Kevin Keniston, chef
du confort des passagers chez Airbus.

When asked about this, an official of the American administration replied:
“The United States is not conducting electronic surveillance aimed at offices
of the World Bank and IMF in Washington.”

Interrogé a ce sujet, un fonctionnaire de I'administration américaine a répondu:
=> “Les Etats-Unis n'effectuent pas de surveillance électronique a I'intention des
bureaux de la Banque mondiale et du FMI a Washington”

(Wu et al., 2016)
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Notes

Translation in natural language processing con-
sists in automatically translate a set of sentences
from one language to another language.



Question answering

Jane went to the hallway.

Mary walked to the bathroom.
Sandra went to the garden.
Daniel went back to the garden.
Sandra took the milk there.
Where is the milk?

garden

=0 HHHH H

H

It started boring, but then it got interesting.
: What's the sentiment?
: positive

= 0

(Kumar et al., 2015)
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Notes

In the task of question answering, the software
is given an input text at the end of which it is
asked a question about it.

This task requires a form of memory, and the
ability to connect nouns, actions, places, etc.
The potential application would be Al-based as-
sistants such as chatbots.



Auto-captioning

A person riding a Two dogs play in the grass.
motorcycle on a dirt road.

A group of young people

Two hockey players are
fighting over the puck.

A close up of a cat laying
on a couch.

(Vinyals et al., 2015)
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Notes

Auto-captioning is a mix of image and natural
language processing: given an input image, the
system outputs a piece of text describing its con-
tent.

Auto-captioning has many applications such as
retrieving an image from its description, or auto-
captioning of images on social medias for blind
and visually impaired people.



Image generation

(Brock et al., 2018)
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Notes

Deep models are also able to learn distributions
of signals such as images, sounds or text and
provide means to sample new examples.



Francois Fleuret

Text generation

System Prompt (human-written)

Model

In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes

Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English.

Completion (machine-written, 10 tries)

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

(Radford et al., 2019)
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Protein folding prediction

(Jumper et al., 2021)
Plasma confinement

(Degrave et al., 2022)
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Why does it work now?
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The success of deep learning is multi-factorial:

e Five decades of research in machine learning,

e CPUs/GPUs/storage developed for other purposes,

¢ lots of data from “the internet”,

e tools and culture of collaborative and reproducible science,

e resources and efforts from large corporations.
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Notes

The reason of the success of deep learning since
2012 is multi-factorial.

There were five decades of research in machine
learning which gave a clear picture of the key
theoretical issues in learning theory, and powerful
tools in data analysis, optimization, and signal
processing.

There were amazing developments of processing
hardware (CPUs, GPUs), and storage devices,
which were originally made for other applications.
The rise of social media led to the availability
of a huge amount of training data. Crowdsourc-
ing platforms, such as Amazon Mechanical Turk,

allowed people to perform annotations tasks to
train models.

Many tools of machine learning are open source,
and are deeply rooted in the culture of collabora-
tive and reproducible science, which allow people
to reuse efficiently what has previously been done
(git, linux, licenses, distribution, etc.).

There was a change in the world of corporations:
we went from a situation where machine learning
would have been useful for corporations only if
it completely solved a given task, to a situation
where there were a financial incentive to improve
machine learning even marginally (“click rate”).
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Five decades of research in ML provided

linear embeddings, etc.),

generalization bounds, etc.),

efficient large-scale algorithms.

a sound statistical formalization (Bayesian estimation, PAC),

a clear picture of fundamental issues (bias/variance dilemma, VC dimension,

a good understanding of optimization issues,
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Notes

Research in machine learning over the past fifty
years brought a taxonomy of principles and meth-
ods which predate deep learning.

All these concepts were cast in a sound statis-
tical formalization and help understand of what
models work and what generalization capabilities
they can have.

The research also brought a clear picture of fun-
damental issues which arise when training models.
In particular, the bias/variance dilemma which
states that when the capacity of the model in-

creases, more data is needed to train it.
Concept such as the Vapnik-Chervonenkis dimen-
sion helped to characterize the complexity of a
model beyond its number of parameters.
Machine learning is closely related to the field of
optimization which provides tools to train in very
high dimensions spaces, and techniques such as
regularization. And it also has strong connection
with computer science to make algorithms scale
up to very large data sets.

a taxonomy of ML concepts (classification, generative models, clustering, kernels,
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From a practical perspective, deep learning

e lessens the need for a deep mathematical grasp,

o makes the design of large learning architectures a system /software development

task,

o allows to leverage modern hardware (clusters of GPUs),

e does not plateau when using more data,

e makes large trained networks a commodity.
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Notes

Deep learning reduces the need for a strong math-
ematical background: a high level understanding
is enough to start using frameworks (PyTorch,
Tensorflow, etc.).

An important part of deep learning now is dealing
with software issues, that is how to make the code
run. The design of models is done at a higher
level of combining existing modules, rather than
implementing the modules themselves in detail
at a low level. These pre-existing implementation
and tools also allow to use dedicated hardware

and large-scale clusters in a transparent manner.

An important aspect of deep learning is its ability
to leverage very large data sets, without plateau-
ing as usual machine learning methods. When
one has more data, one can make the models
bigger easily (with more parameters), and the
performance increases.

A central phenomenon of deep learning is that
a trained predictor is an asset in itself. It has
become commonplace that people re-use models
trained by others to start their task. The frontier
between designing algorithms that train networks,
and producing trained networks is getting blurry.
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Notes

The graph shows the number of flops (floating
point operations per second, log scale) per USD
as a function of decades. The increase is exponen-
tial and contributed to the rise of deep learning.
A standard gaming GPU can now perform ~ 20
trillions (10'%) operations per second.

Note that comparing raw numbers can be mislead-
ing, since actual performance for deep-learning
strongly depends on the drivers and libraries.



Validation loss for language models vs. training compute.

Validation Loss
Parameters
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Compute (PetaFLOP/s-days)

(Brown et al., 2020)
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Training compute (FLOPs) of milestone Machine Learning systems over time
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Notes

The graph above represents the computation re-
quired to train several states-of-the-art models
vs. the year.

We observe an exponential increase in the compu-
tation required to train models, mostly because
researchers solve more complex tasks, but also
because the computation power is available.



Training compute (FLOPs) of milestone Machine Learning systems over time
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Notes

The graph above represents the computation re-
quired to train several states-of-the-art deep learn-
ing models vs. the year. These models are not
specific to one domain and come from computer
vision (AlexNet, VGG), natural language under-
standing (Seq2Seq, Neural Machine Translation),
and strategy games (AlphaZero).



Computer vision

Natural Language Processing

Frangois Fleuret

Data-set Year Nb. images Size
MNIST (classification) 1998 60K 12Mb
Caltech 101 (classification) 2003 9.1K 130Mb
Caltech 256 (classification) 2007 30K 1.2Gb
CIFAR10 (classification) 2009 60K 160Mb
ImageNet (classification) 2012 1.2M 150Gb
MS-COCO (segmentation) 2015 200K 32Gb
Cityscape (segmentation) 2016 25K 60Gb
LAION-5B (multi-modal) 2022 5.85B 240Tb
Data-set Year Size
SST2 (sentiment analysis) 2013 20Mb
WMT-18 (translation) 2018 7Gb
OSCAR (language model) 2020 6Tb
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Notes

In parallel to the growth of the models and com-
putation means, data sets also increased enor-

mously.
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The biggest lesson that can be read from 70 years of Al research is
that general methods that leverage computation are ultimately the
most effective, and by a large margin.

(Richard Sutton, 2019)

Quantity has a Quality All Its Own.

(Thomas A. Callaghan Jr., 1979)
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Notes

One core reason of deep learning's success is
purely quantitative: models have very large num-
ber of parameters, they require lots of computa-
tion, with very large training sets.

It is probably wrong to translate an interpreta-
tion of small networks to big ones. Models have
become so complicated that it is very hard to
have a grasp at what is really happening in detail
inside a network. It is likely that processing in
very large models qualitatively differs from the
processing in small ones.



Implementing a deep network, PyTorch
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Deep-learning development is usually done in a framework:

Language(s) License Main backer
PyTorch Python, C++ BSD Facebook
TensorFlow Python, C++ Apache Google
JAX Python Apache Google
MXNet Python, C++, R, Scala Apache Amazon
CNTK Python, C++ MIT Microsoft
Torch Lua BSD Facebook
Theano Python BSD U. of Montreal
Caffe CH++ BSD 2 clauses U. of CA, Berkeley

A fast, low-level, compiled backend to access computation devices, combined with a
slow, high-level, interpreted language. Python has an incredible ecosystem and is used
across fields.
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Notes

Most deep learning frameworks consist of

e a backend in a low level language
(C/C++/CUDA) which directly interacts
with the hardware and the libraries which
control the hardware;

e a frontend in a high level language.
Python got very popular thanks to his
extremely rich ecosystem of libraries for
plotting, loading data formats, machine
learning, signal processing, etc.



We will use the PyTorch framework for our experiments (Paszke et al., 2019).

O PyTorch

http://pytorch.org

“PyTorch is a python package that provides two high-level features:
e Tensor computation (like NumPy) with strong GPU acceleration

e Deep Neural Networks built on a tape-based autograd system”
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http://pytorch.org

MNIST data-set
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28 x 28 grayscale images, 60K train samples, 10K test samples.

1998)

(LeCun et al.,

23 /25

Deep learning / 1.2. Current applications and success

Frangois Fleuret

Notes

MNIST is one of the most standard computer

vision data set published in 1998, and can be

seen as a minimal real-world image problem. A

good practice when designing a new method is

to benchmark it on this corpus to have a grasp

of how it behaves.



model = nn.Sequential(
nn.Conv2d( 1, 32, 5), nn.MaxPool2d(3), nn.ReLU(Q),
nn.Conv2d (32, 64, 5), nn.MaxPool2d(2), nn.RelLU(Q),
nn.Flatten(),
nn.Linear (256, 200), nn.ReLU(),

nn.Linear (200, 10)

nb_epochs, batch_size = 10, 100
(:) criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), 1lr = 0.1)

model.to(device)
(:) criterion.to(device)

train_input, train_targets = train_input.to(device), train_targets.to(device)

(:) mu, std = train_input.mean(), train_input.std()

train_input.sub_(mu) .div_(std)

for e in range(nb_epochs):

= model (input)

for input, targets in zip(train_input.split(batch_size),
train_targets.split(batch_size)):

output
(:)< loss = criterion(output, targets)

optimizer.zero_grad()
loss.backward()
optimizer.step()

~8s on a GTX1080, ~1% test error

Frangois Fleuret
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Notes

Here is a minimal piece of code to train a network
for classifying MNIST images. This snippet of
code is shown here to give a sense of the amount
and complexity of code required, we will re-visit
in details all the aspects in the course:

1. The model is a sequence of pre-defined
PyTorch modules.

2. We define the parameters of the
optimization, including the choice of the
criterion that specified the quantity to

minimize, and the optimizer itself which is
the method we will use.

. The data and the model are moved to the

device we want to use, usually a GPU.

. The data set is normalized. We will see

that normalizing the data set is important
for faster and better training.

. The training itself consist of several loops,

each going through all the data by “mini
batches” of samples.



% PyTorch Papers of Total TensorFlow/PyTorch Papers
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