
Deep learning

10.3. Non-volume preserving networks

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

A standard result of probability theory is that if f is continuous, invertible and
[almost everywhere] differentiable, and X = f −1(Z), then

∀x , µX (x) = µZ (f (x)) |Jf (x)| .

f

1

3

µZ

1 5µX

The term |Jf (x)| accounts for the local “stretching” of the space.

François Fleuret Deep learning / 10.3. Non-volume preserving networks 1 / 34

Notes

Another strategy to model high dimension data
densities is to train a model to transform the
data density into a fixed “normalized” one. The
resulting mapping is called a normalizing flow.
Those methods rely on a standard result of
probability theory. If f is continuous, invert-
ible, and [almost everywhere] differentiable, and

X = f −1(Z), then the density µX of X at a cer-
tain point x is equal to the density of Z at the
image point f (x) multiplied by the determinant
of f ’s Jacobian at x that reflects the local expan-
sion of the space.

This formula shows that the density of X is pro-
portional to how likely it was for Z to be f (x),
and how much f is “stretching” locally the space
there.
Here we take Z uniform on [1, 3], and f mono-
tonically increasing with three linear pieces, the
first and last ones with a slope of 1, and the
middle one with a slop lesser than 1. When the
slope is 1, we have the exact same density in
the two domains. When the slope is smaller, the
corresponding density from Z is expanded on a
broader domain for X .

Since
µX (x) = µZ (f (x)) |Jf (x)| ,

if f is a parametric function such that we can compute [and differentiate]

µZ (f (x)) and |Jf (x)| ,

given x1, . . . , xN i.i.d ∼ µ, we can make µX fit the data by maximizing∑
n

log µX (xn) =
∑
n

log µZ (f (xn)) + log |Jf (xn)| .

If Z ∼ 𝒩 (0, I),

log µZ (f (xn)) = −
1

2

(
∥f (xn)∥2 + d log 2π

)
.

We aim at f (X) ∼ 𝒩 (0, I), hence at f normalizing the distribution.

François Fleuret Deep learning / 10.3. Non-volume preserving networks 2 / 34

Consider an increasing piece-wise linear mapping with parameters α, ξ1, . . . , ξQ .

α

eξ1

eξ2

eξQ

. . .

xmin xmax

François Fleuret Deep learning / 10.3. Non-volume preserving networks 3 / 34

Notes

To illustrate this on a simple example, we consider
an increasing piece-wise affine model:

• f (x) = α for x ≤ xmin,

• [xmin, xmax] is split in N intervals in each of

which f is affine and increases by eξq ,

• f is constant for x ≥ xmax , and hence
equal to α +

∑
q e

ξq .

The quantities N, xmin, and xmax will be fixed,
while α and the ξqs are the parameters of f that
will be optimized during training.

class PiecewiseLinear(nn.Module):
def __init__(self, nb, xmin, xmax):

super().__init__()
self.xmin = xmin
self.xmax = xmax
self.nb = nb
self.alpha = nn.Parameter(torch.tensor([xmin], dtype = torch.float))
mu = math.log((xmax - xmin) / nb)
self.xi = nn.Parameter(torch.empty(nb + 1).normal_(mu, 1e-4))

def forward(self, x):
y = self.alpha + self.xi.exp().cumsum(0)
u = self.nb * (x - self.xmin) / (self.xmax - self.xmin)
n = u.long().clamp(0, self.nb - 1)
a = (u - n).clamp(0, 1)
x = (1 - a) * y[n] + a * y[n + 1]
return x

François Fleuret Deep learning / 10.3. Non-volume preserving networks 4 / 34

Notes

We initialize the model so that f behaves like the identity on [xmin, xmax].
forward operates on a batch of values. The variable y holds f ’s values at the changes of slope, n
the index of the interval for each input value, and a the relative position in the interval.

For f : R → R increasing, we have

|Jf (xn)| = f ′(xn)

so we should minimize ∑
n

1

2

(
f (xn)

2 + log 2π
)
− log f ′(xn).

François Fleuret Deep learning / 10.3. Non-volume preserving networks 5 / 34

To work with batches of samples, we have to compute (f ′(x1), . . . , f ′(xN)) with
autograd.

With
Φ(x1, . . . , xN) = f (x1) + · · ·+ f (xN)

we have
∇Φ(x1, . . . , xn) =

(
f ′(x1), . . . , f

′(xN)
)
.

François Fleuret Deep learning / 10.3. Non-volume preserving networks 6 / 34

ℒ (f) =
1

N

∑
n

1

2

(
f (xn)

2 + log 2π
)
− log f ′(xn).

for input in train_input.split(batch_size):
input.requires_grad_()
output = model(input)

derivatives, = autograd.grad(
output.sum(), input,
retain_graph = True, create_graph = True

)

loss = (0.5 * (output**2 + math.log(2*pi)) - derivatives.log()).mean()

optimizer.zero_grad()
loss.backward()
optimizer.step()

François Fleuret Deep learning / 10.3. Non-volume preserving networks 7 / 34

Notes

We need the derivative of f w.r.t. its in-
put, so specify requires_grad_(), and com-
pute the gradient of output.sum() to get
(f ′(x1), . . . , f

′(xN)).
Since PyTorch by default allows to use
the autograd graph only once, we specify
retain_graph=True when computing the f ′ to
be able to use it a second time to compute the
gradient of the loss. And since the loss depends
on the f ′, we also state create_graph = True.

Target distribution µ Resulting mapping f̂

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

µX with X = f̂ −1(Z) and Z ∼ 𝒩 (0, 1)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 12 / 34

Notes

As a toy example, we use a mixture of two Gaus-
sian distributions as the data distribution (top
left), and train a PiecewiseLinear model with
1000 intervals to map this distribution normal
distribution of zero mean and unit variance.
The empirical distribution (red curve, bottom left)
is estimated by taking regularly spaced points on
the interval, and computing for each of these x
the log of the normal density at f (x), and f ′(x).
The bottom right image shows how f is contract-
ing or expanding the space to properly fit the
normal distribution. The mapping from x to f (x)
is depicted by the red lines. In particular, the
“hole” between the two Gaussians in the mixture
gets contracted to fit the normal part, which the
middle of the Gaussians are expanded. The tails
are just shifted.

Non-Volume Preserving networks

François Fleuret Deep learning / 10.3. Non-volume preserving networks 13 / 34

To apply the same idea to high dimension signals, we have to compute and differentiate
|Jf (x)|. And to use that approach for synthesis, we can sample Z ∼ 𝒩 (0, I) and
compute f −1(Z).

However, for standard layers:

• computing f −1(z) is impossible, and

• computing |Jf (x)| is intractable.

Dinh et al. (2014) introduced the coupling layers to address both issues.

The resulting Non-Volume Preserving network (NVP) is one form of normalizing flow
among many techniques (Papamakarios et al., 2019).

François Fleuret Deep learning / 10.3. Non-volume preserving networks 14 / 34

Notes

In the toy example of the first part, computing
|Jf | could be done with autograd since we were
in 1d. This does not scale to real-world high
dimension signals.

Remember that if f is a composition

f = f (K) ◦ · · · ◦ f (1)

we have

Jf (x) =
K∏

k=1

Jf (k)
(
f (k−1) ◦ · · · ◦ f (1)(x)

)
,

hence

log |Jf (x)| =
K∑

k=1

log
∣∣∣Jf (k) (f (k−1) ◦ · · · ◦ f (1)(x)

)∣∣∣ .

François Fleuret Deep learning / 10.3. Non-volume preserving networks 15 / 34

We use here the formalism from Dinh et al. (2016).

Given a dimension d , a Boolean vector b ∈ {0, 1}d and two mappings

s :Rd → Rd

t :Rd → Rd ,

we define a [fully connected] coupling layer as the transformation

c : Rd → Rd

x 7→ b ⊙ x + (1− b)⊙
(
x ⊙ exp(s(b ⊙ x)) + t(b ⊙ x)

)
where exp is component-wise, and ⊙ is the Hadamard component-wise product.

For clarity in what follows, b has all 1s first, follows by 0s, but this is not required.

b = (1, 1, . . . , 1︸ ︷︷ ︸
∆

, 0, 0, . . . , 0︸ ︷︷ ︸
d−∆

)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 16 / 34

Notes

The quantities t and s stand respectively for
translation and scale.
Such a “coupling layer” keeps the components
for which the corresponding bi is 1 unchanged,
modifies the other components in an invertible
way that only depends on the unchanged ones.

The expression

c(x) = b ⊙ x + (1− b)⊙
(
x ⊙ exp(s(b ⊙ x)) + t(b ⊙ x)

)
can be understood as: forward b ⊙ x unchanged, and apply to (1− b)⊙ x an invertible
transformation parametrized by b ⊙ x .

(0)

(1)

xb c(x)

s exp t

⊙ +

François Fleuret Deep learning / 10.3. Non-volume preserving networks 17 / 34

The consequence is that c is invertible, and if y = c(x)

x = b ⊙ y + (1− b)⊙
(
y − t(b ⊙ y)

)
⊙ exp(−s(b ⊙ y)).

(0)

(1)

c(x)b x

−s exp−t

+ ⊙

François Fleuret Deep learning / 10.3. Non-volume preserving networks 18 / 34

The second property of this mapping is the simplicity of its Jacobian.

Jc (x) =



1

. . . (0)

1

exp(s∆+1(x ⊙ b))

(̸= 0)
. . .

exp(sd (x ⊙ b))


and we have

log |Jc (x)| =
∑
i :bi=0

si (x ⊙ b)

=
∑
i

((1− b)⊙ s (x ⊙ b))i .

François Fleuret Deep learning / 10.3. Non-volume preserving networks 19 / 34

Notes

Remember that for the sake of simplicity we
make the assumption that all the 1s in b appear
consecutively first.
For any pair i, j such that bi = 1, bj = 1, we
have

∂ci

∂xj
=

∂xi

∂xj
=

{
1 if i = j

0 otherwise
,

which gives us a diagonal of ones in the top left
part of the Jacobian.
For any pair i, j such that bi = 0, bj = 0, we
have

∂ci

∂xj
=

∂

∂xj

(
xi e

does not depend
on xj because bj=0︷ ︸︸ ︷

si (b ⊙ x) +

constant
w. r. t. xj︷ ︸︸ ︷
ti (b ⊙ x)

)
=

{
exp(si (b ⊙ x)) if i = j

0 otherwise
,

so the bottom right part of the Jacobian is a
diagonal with terms exp(si (x ⊙ b)).

dim = 6

x = torch.randn(1, dim).requires_grad_()
b = torch.zeros(1, dim)
b[:, :dim//2] = 1.0

s = nn.Sequential(nn.Linear(dim, dim), nn.Tanh())
t = nn.Sequential(nn.Linear(dim, dim), nn.Tanh())

c = b * x + (1 - b) * (x * torch.exp(s(b * x)) + t(b * x))

Flexing a bit
j = torch.cat([autograd.grad(c_k, x, retain_graph=True)[0] for c_k in c[0]])

print(j)

prints

tensor([[1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 1.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 1.0000, 0.0000, 0.0000, 0.0000],
[0.4001, -0.3774, -0.9410, 1.0074, 0.0000, 0.0000],
[-0.1756, 0.0409, 0.0808, 0.0000, 1.2412, 0.0000],
[0.0875, -0.3724, -0.1542, 0.0000, 0.0000, 0.6186]])

François Fleuret Deep learning / 10.3. Non-volume preserving networks 20 / 34

To recap, with f (k), k = 1, . . . ,K coupling layers,

f = f (K) ◦ · · · ◦ f (1),

and x
(0)
n = xn and x

(k)
n = f (k)

(
x
(k−1)
n

)
, we train by minimizing

ℒ (f) = −
∑
n

−
1

2

(∥∥∥x(K)
n

∥∥∥2 + d log 2π

)
+

K∑
k=1

log
∣∣∣Jf (k) (x(k−1)

n

)∣∣∣ ,
with

log
∣∣Jf (k) (x)∣∣ = ∑

i

((
1− b(k)

)
⊙ s(k)

(
x ⊙ b(k)

))
i
.

And to sample we just need to generate Z ∼ 𝒩 (0, I) and compute X .

François Fleuret Deep learning / 10.3. Non-volume preserving networks 21 / 34

Notes

Since all coupling layers are invertible, f −1 can
be computed. So at generation time, we draw a
sample Z ∼ 𝒩 (0, I) and compute X = f −1(Z)

A coupling layer can be implemented with

class NVPCouplingLayer(nn.Module):
def __init__(self, map_s, map_t, b):

super().__init__()
self.map_s = map_s
self.map_t = map_t
self.register_buffer('b', b.unsqueeze(0))

def forward(self, x, ldj): # ldj for log det Jacobian
s, t = self.map_s(self.b * x), self.map_t(self.b * x)
ldj = ldj + ((1 - self.b) * s).sum(1)
y = self.b * x + (1 - self.b) * (torch.exp(s) * x + t)
return y, ldj

def invert(self, y):
s, t = self.map_s(self.b * y), self.map_t(self.b * y)
return self.b * y + (1 - self.b) * (torch.exp(-s) * (y - t))

The forward here computes both the image of x and the update on the accumulated
determinant of the Jacobian, i.e.

(x , u) 7→ (f (x), u + log |Jf (x)|) .

François Fleuret Deep learning / 10.3. Non-volume preserving networks 22 / 34

We can then define a complete network with one-hidden layer tanh MLPs for the s and
t mappings

class NVPNet(nn.Module):
def __init__(self, dim, hidden_dim, depth):

super().__init__()
b = torch.empty(dim)
self.layers = nn.ModuleList()
for d in range(depth):

if d%2 == 0:
i = torch.randperm(b.numel())[0:b.numel() // 2]
b.zero_()[i] = 1

else:
b = 1 - b

map_s = nn.Sequential(nn.Linear(dim, hidden_dim), nn.Tanh(),
nn.Linear(hidden_dim, dim))

map_t = nn.Sequential(nn.Linear(dim, hidden_dim), nn.Tanh(),
nn.Linear(hidden_dim, dim))

self.layers.append(NVPCouplingLayer(map_s, map_t, b.clone()))

def forward(self, x, ldj):
for m in self.layers: x, ldj = m(x, ldj)
return x, ldj

def invert(self, y):
for m in reversed(self.layers): y = m.invert(y)
return y

François Fleuret Deep learning / 10.3. Non-volume preserving networks 23 / 34

Notes

Masks b are made in such a way that b(2n) are

generated at random, while b(2n+1) = 1 − b(2n).
It assures that all the components of the input
are changed. This is one out of many strategies
that can be used to ensure that the components
are modified.

And the log-proba of individual samples of a batch

def LogProba(x, ldj):
log_p = - 0.5 * (x**2 + math.log(2*pi)).sum(1) + ldj
return log_p

François Fleuret Deep learning / 10.3. Non-volume preserving networks 24 / 34

Training is achieved by maximizing the mean log-proba

batch_size = 100

model = NVPNet(dim = 2, hidden_dim = 2, depth = 4)
optimizer = optim.Adam(model.parameters(), lr = 1e-2)

for e in range(args.nb_epochs):

for input in train_input.split(batch_size):
output, ldj = model(input, 0)
loss = - LogProba(output, ldj).mean()
model.zero_grad()
loss.backward()
optimizer.step()

Finally, we can sample according to µX with

z = torch.randn(nb_generated_samples, 2)
x = model.invert(z)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 25 / 34

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4 Real

Fake

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4 Real

Fake

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4 Real

Fake

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4 Real

Fake

François Fleuret Deep learning / 10.3. Non-volume preserving networks 26 / 34

Notes

We test this model on 2d synthetic distributions.
On each graph:

• the blue dots are sampled training points,

• the blue lines are circles deformed by the
“true” f ,

• the red lines are circles deformed by the
trained model,

• The red dots are points sampled according
to the trained model.

The true density at the bottom-right is discon-
tinuous. It is obtained by sampling according to
a normal, and adding 1 if the x coordinate is
positive, and −1 otherwise. This is challenging
for the model which is continuous.

Dinh et al. (2016) apply this approach to convolutional layers by using bs consistent
with the activation map structure, and reducing the map size while increasing the
number of channels.

Published as a conference paper at ICLR 2017

4 8

73
2

1 2

3 4

5 6

7 8
6
1 5

Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern
mask. On the right, a channel-wise masking. The squeezing operation reduces the 4× 4× 1 tensor
(on the left) into a 2× 2× 4 tensor (on the right). Before the squeezing operation, a checkerboard
pattern is used for coupling layers while a channel-wise masking pattern is used afterward.

(see Figure 2(b)),
{
y1:d = x1:d
yd+1:D = xd+1:D � exp

(
s(x1:d)

)
+ t(x1:d)

(7)

⇔
{
x1:d = y1:d
xd+1:D =

(
yd+1:D − t(y1:d)

)
� exp

(
− s(y1:d)

)
,

(8)

meaning that sampling is as efficient as inference for this model. Note again that computing the
inverse of the coupling layer does not require computing the inverse of s or t, so these functions can
be arbitrarily complex and difficult to invert.

3.4 Masked convolution

Partitioning can be implemented using a binary mask b, and using the functional form for y,

y = b� x+ (1− b)�
(
x� exp

(
s(b� x)

)
+ t(b� x)

)
. (9)

We use two partitionings that exploit the local correlation structure of images: spatial checkerboard
patterns, and channel-wise masking (see Figure 3). The spatial checkerboard pattern mask has value
1 where the sum of spatial coordinates is odd, and 0 otherwise. The channel-wise mask b is 1 for the
first half of the channel dimensions and 0 for the second half. For the models presented here, both
s(·) and t(·) are rectified convolutional networks.

3.5 Combining coupling layers

Although coupling layers can be powerful, their forward transformation leaves some components
unchanged. This difficulty can be overcome by composing coupling layers in an alternating pattern,
such that the components that are left unchanged in one coupling layer are updated in the next (see
Figure 4(a)).

The Jacobian determinant of the resulting function remains tractable, relying on the fact that

∂(fb ◦ fa)
∂xTa

(xa) =
∂fa

∂xTa
(xa) ·

∂fb

∂xTb

(
xb = fa(xa)

)
(10)

det(A ·B) = det(A) det(B). (11)

Similarly, its inverse can be computed easily as

(fb ◦ fa)−1 = f−1a ◦ f−1b . (12)

5

(Dinh et al., 2016)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 27 / 34

They combine these layers by alternating masks, and branching out half of the channels
at certain points to forward them unchanged.

Published as a conference paper at ICLR 2017

=

+
x

+
x

=

=

+
x

(a) In this alternating pattern, units which remain identical in one
transformation are modified in the next.

z1 z2

x1 x2 x3 x4

z3

z1 z2 z3 z4

(1) (1)

(2)

f(1)

f(2)

f(3)

h4

h4h3

(b) Factoring out variables.
At each step, half the vari-
ables are directly modeled as
Gaussians, while the other
half undergo further transfor-
mation.

Figure 4: Composition schemes for affine coupling layers.

3.6 Multi-scale architecture

We implement a multi-scale architecture using a squeezing operation: for each channel, it divides the
image into subsquares of shape 2× 2× c, then reshapes them into subsquares of shape 1× 1× 4c.
The squeezing operation transforms an s × s × c tensor into an s

2 × s
2 × 4c tensor (see Figure 3),

effectively trading spatial size for number of channels.

At each scale, we combine several operations into a sequence: we first apply three coupling layers
with alternating checkerboard masks, then perform a squeezing operation, and finally apply three
more coupling layers with alternating channel-wise masking. The channel-wise masking is chosen so
that the resulting partitioning is not redundant with the previous checkerboard masking (see Figure
3). For the final scale, we only apply four coupling layers with alternating checkerboard masks.

Propagating a D dimensional vector through all the coupling layers would be cumbersome, in terms
of computational and memory cost, and in terms of the number of parameters that would need to be
trained. For this reason we follow the design choice of [57] and factor out half of the dimensions at
regular intervals (see Equation 14). We can define this operation recursively (see Figure 4(b)),

h(0) = x (13)

(z(i+1), h(i+1)) = f (i+1)(h(i)) (14)

z(L) = f (L)(h(L−1)) (15)

z = (z(1), . . . , z(L)). (16)

In our experiments, we use this operation for i < L. The sequence of coupling-squeezing-coupling
operations described above is performed per layer when computing f (i) (Equation 14). At each
layer, as the spatial resolution is reduced, the number of hidden layer features in s and t is doubled.
All variables which have been factored out at different scales are concatenated to obtain the final
transformed output (Equation 16).

As a consequence, the model must Gaussianize units which are factored out at a finer scale (in an
earlier layer) before those which are factored out at a coarser scale (in a later layer). This results in the
definition of intermediary levels of representation [53, 49] corresponding to more local, fine-grained
features as shown in Appendix D.

Moreover, Gaussianizing and factoring out units in earlier layers has the practical benefit of distribut-
ing the loss function throughout the network, following the philosophy similar to guiding intermediate
layers using intermediate classifiers [40]. It also reduces significantly the amount of computation and
memory used by the model, allowing us to train larger models.

6

(Dinh et al., 2016)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 28 / 34

The structure for generating images consists of

• ×2 stages
• ×3 checkerboard coupling layers,
• a squeezing layer,
• ×3 channel coupling layers,
• a factor-out layer.

• ×1 stage
• ×4 checkerboard coupling layers
• a factor-out layer.

The s and t mappings get more complex in the later layers.

François Fleuret Deep learning / 10.3. Non-volume preserving networks 29 / 34

A Samples

Figure 7: Samples from a model trained on Imagenet (64× 64).

13

(Dinh et al., 2016)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 30 / 34

Figure 8: Samples from a model trained on CelebA.

14

(Dinh et al., 2016)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 31 / 34

Figure 9: Samples from a model trained on LSUN (bedroom category).

15

(Dinh et al., 2016)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 32 / 34

Figure 10: Samples from a model trained on LSUN (church outdoor category).

16

(Dinh et al., 2016)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 33 / 34

Figure 6: Manifold generated from four examples in the dataset. Clockwise from top left: CelebA,
Imagenet (64× 64), LSUN (tower), LSUN (bedroom).

over sample quality in a limited capacity setting. As a result, our model outputs sometimes highly
improbable samples as we can notice especially on CelebA. As opposed to variational autoencoders,
the samples generated from our model look not only globally coherent but also sharp. Our hypothesis
is that as opposed to these models, real NVP does not rely on fixed form reconstruction cost like an L2

norm which tends to reward capturing low frequency components more heavily than high frequency
components. Unlike autoregressive models, sampling from our model is done very efficiently as it is
parallelized over input dimensions. On Imagenet and LSUN, our model seems to have captured well
the notion of background/foreground and lighting interactions such as luminosity and consistent light
source direction for reflectance and shadows.

We also illustrate the smooth semantically consistent meaning of our latent variables. In the latent
space, we define a manifold based on four validation examples z(1), z(2), z(3), z(4), and parametrized
by two parameters φ and φ′ by,

z = cos(φ)
(
cos(φ′)z(1) + sin(φ′)z(2)

)
+ sin(φ)

(
cos(φ′)z(3) + sin(φ′)z(4)

)
. (19)

We project the resulting manifold back into the data space by computing g(z). Results are shown
Figure 6. We observe that the model seems to have organized the latent space with a notion of meaning
that goes well beyond pixel space interpolation. More visualization are shown in the Appendix.

5 Discussion and conclusion

In this paper, we have defined a class of invertible functions with tractable Jacobian determinant,
enabling exact and tractable log-likelihood evaluation, inference, and sampling. We have shown that
this class of generative model achieves competitive performances, both in terms of sample quality
and log-likelihood. Many avenues exist to further improve the functional form of the transformations,
for instance by exploiting the latest advances in dilated convolutions [69] and residual networks
architectures [60].

This paper presented a technique bridging the gap between auto-regressive models, variational
autoencoders, and generative adversarial networks. Like auto-regressive models, it allows tractable
and exact log-likelihood evaluation for training. It allows however a much more flexible functional
form, similar to that in the generative model of variational autoencoders. This allows for fast
and exact sampling from the model distribution. Like GANs, and unlike variational autoencoders,
our technique does not require the use of a fixed form reconstruction cost, and instead defines a
cost in terms of higher level features, generating sharper images. Finally, unlike both variational
autoencoders and GANs, our technique is able to learn a semantically meaningful latent space which
is as high dimensional as the input space. This may make the algorithm particularly well suited to
semi-supervised learning tasks, as we hope to explore in future work.

9

(Dinh et al., 2016)

François Fleuret Deep learning / 10.3. Non-volume preserving networks 34 / 34

References

L. Dinh, D. Krueger, and Y. Bengio. NICE: non-linear independent components estimation. CoRR,
abs/1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. CoRR,
abs/1605.08803, 2016.

G. Papamakarios, E. Nalisnick, D. Rezende, S. Mohamed, and B. Lakshminarayanan. Normalizing
flows for probabilistic modeling and inference. CoRR, abs/1912.02762, 2019.

	Non-Volume Preserving networks
	References

