Deep learning

10.3. Non-volume preserving networks

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

Frangois Fleuret

A standard result of probability theory is that if f is continuous, invertible and
[almost everywhere] differentiable, and X = f~1(Z), then

Vx, px(x) = pz(f(x)) [Jr(x)].

Kz

KX 5

The term |J¢(x)| accounts for the local “stretching” of the space.

Deep learning / 10.3. Non-volume preserving networks

Notes

Another strategy to model high dimension data
densities is to train a model to transform the
data density into a fixed “normalized” one. The
resulting mapping is called a normalizing flow.
Those methods rely on a standard result of
probability theory. If f is continuous, invert-
ible, and [almost everywhere] differentiable, and
X = f71(Z), then the density ux of X at a cer-
tain point x is equal to the density of Z at the
image point f(x) multiplied by the determinant
of f's Jacobian at x that reflects the local expan-
sion of the space.

This formula shows that the density of X is pro-
portional to how likely it was for Z to be f(x),
and how much f is “stretching” locally the space
there.

Here we take Z uniform on [1, 3], and f mono-
tonically increasing with three linear pieces, the
first and last ones with a slope of 1, and the
middle one with a slop lesser than 1. When the
slope is 1, we have the exact same density in
the two domains. When the slope is smaller, the
corresponding density from Z is expanded on a
broader domain for X.

1/34

Frangois Fleuret

Since
px(x) = pz(f(x)) [Je(x)],

if f is a parametric function such that we can compute [and differentiate]
pz(f(x)) and [Jr(x)|,
given xi,...,xy i.i.d ~ p, we can make px fit the data by maximizing

D logux(xn) = > log uz(f(xn)) + log [Jr(xn)| -

If Z ~ #(0,1),

08 12 (F(xn)) = — (I£(xn)|* + d og 2)

We aim at (X) ~ #(0, 1), hence at f normalizing the distribution.

Deep learning / 10.3. Non-volume preserving networks

2/34

Consider an increasing piece-wise linear mapping with parameters o, £1,...,&Q.

Xmin Xmax

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 3/34

Notes

To illustrate this on a simple example, we consider
an increasing piece-wise affine model:

o f(x) = a for x < Xmin,
® [Xmin, Xmax] is split in N intervals in each of

which f is affine and increases by eg‘?,

e f is constant for x > xmnax, and hence
equal to ov + > eSa.

The quantities N, Xpin, and xmax will be fixed,
while o and the £;s are the parameters of f that
will be optimized during training.

class PiecewiseLinear (nn.Module):
def __init__(self, nb, xmin, xmax):

super () .__init__Q
self.xmin = xmin
self.xmax = xmax
self.nb = nb
self.alpha = nn.Parameter(torch.tensor([xmin], dtype = torch.float))
mu = math.log((xmax - xmin) / nb)
self.xi = nn.Parameter(torch.empty(nb + 1).normal_(mu, le-4))

def forward(self, x):

= self.alpha + self.xi.exp().cumsum(0)

= self.nb * (x - self.xmin) / (self.xmax - self.xmin)
= u.long().clamp(0, self.nb - 1)

(u - n).clamp(0, 1)

= (1 -a) *y[n] +ax*yln+ 1]

return x

M B e

Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 4 /34

Notes

We initialize the model so that f behaves like the identity on [Xmin, Xmax]-
forward operates on a batch of values. The variable y holds f’s values at the changes of slope, n
the index of the interval for each input value, and a the relative position in the interval.

For f : R — R increasing, we have
| Jr(xn)| = £'(xn)

so we should minimize

(7"(x,,)2 + log 27) — log ' (xn).

>

n

N =

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 5/ 34

To work with batches of samples, we have to compute (f'(x1),..., f’ (xy)) with
autograd.

With
D(x1,...,xy) = f(x1) + -+ f(xn)

we have

Vo(xi,...,xn) = (f'(x1),...,f (xn)) -

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 6 /34

Francois Fleuret

1

Z(f) = N > % (f(xn)? + log 27) — log ' (xn).

n

for input in train_input.split(batch_size):

input.requires_grad_()
output = model (input)

derivatives, = autograd.grad(
output.sum(), input,

retain_graph = True, create_graph = True

loss = (0.5 * (output**2 + math.log(2*pi)) - derivatives.log()).mean()

optimizer.zero_grad()
loss.backward()
optimizer.step()

Deep learning / 10.3. Non-volume preserving networks

Notes

We need the derivative of f w.r.t. its in-
put, so specify requires_grad_(), and com-
pute the gradient of output.sum() to get
(F'(x1)y ..., (xn)).

Since PyTorch by default allows to use
the autograd graph only once, we specify
retain_graph=True when computing the f’ to
be able to use it a second time to compute the
gradient of the loss. And since the loss depends
on the f’, we also state create_graph = True.

7/34

Target distribution p Resulting mapping f

px with X = f~%(Z) and Z ~ #(0,1)

Y
D
A
)

A

)

/”%{’//,{’//J///J////

/ i l /
i
)
A
r/r//r/r/mr/r/mr/r/mm//f/
1 l

)
l/ll/I/l/ll/l/l/ll/l/l/ll/l/l///
)
i

\

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 12 /34

Notes

As a toy example, we use a mixture of two Gaus-
sian distributions as the data distribution (top
left), and train a PiecewiseLinear model with
1000 intervals to map this distribution normal
distribution of zero mean and unit variance.
The empirical distribution (red curve, bottom left)
is estimated by taking regularly spaced points on
the interval, and computing for each of these x
the log of the normal density at f(x), and f’(x).
The bottom right image shows how f is contract-
ing or expanding the space to properly fit the
normal distribution. The mapping from x to f(x)
is depicted by the red lines. In particular, the
“hole” between the two Gaussians in the mixture
gets contracted to fit the normal part, which the
middle of the Gaussians are expanded. The tails
are just shifted.

Non-Volume Preserving networks

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 13 /34

To apply the same idea to high dimension signals, we have to compute and differentiate
|Jr(x)|. And to use that approach for synthesis, we can sample Z ~ #(0, /) and
compute f~1(2).

However, for standard layers:

« computing f~!(z) is impossible, and

e computing |J¢(x)| is intractable.

Dinh et al. (2014) introduced the coupling layers to address both issues.

The resulting Non-Volume Preserving network (NVP) is one form of normalizing flow
among many techniques (Papamakarios et al., 2019).

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 14 / 34

Notes

In the toy example of the first part, computing
| Jr| could be done with autograd since we were
in 1d. This does not scale to real-world high
dimension signals.

Remember that if f is a composition

we have

hence

Frangois Fleuret

F=fK) ... 0 fF)

K
Jr(x) = H Jetk) (f(k—l) 0---0 f(l)(X)) ,
k=1

K

log | Jr(x)] = > log |4y (F* o0 FD(x)) .
k=1

Deep learning / 10.3. Non-volume preserving networks

15/ 34

We use here the formalism from Dinh et al. (2016).

Given a dimension d, a Boolean vector b € {0,1}“ and two mappings
s:RY 5 RY
t:RY 5 RY,
we define a [fully connected] coupling layer as the transformation
c:RT -5 R
x> bOx+(1—b)@ <X®exp(s(b®x))—|—t(b®x)>

where exp is component-wise, and © is the Hadamard component-wise product.

For clarity in what follows, b has all 1s first, follows by Os, but this is not required.

b=(1,1,...,1,0,0,...,0)

(.

N~ N~
A d—A

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 16 / 34

Notes

The quantities t and s stand respectively for
translation and scale.

Such a “coupling layer” keeps the components
for which the corresponding b; is 1 unchanged,
modifies the other components in an invertible
way that only depends on the unchanged ones.

Francois Fleuret

The expression

c(x)=bOx+(1-b) o (X®exp(s(b®x)) n t(b@x))

can be understood as: forward b ® x unchanged, and apply to (1 — b) ® x an invertible
transformation parametrized by b ® x.

exp t

W

Deep learning / 10.3. Non-volume preserving networks

-

c(x)

17 / 34

The consequence is that c is invertible, and if y = c(x)

x=bOy+(1-b)0 (y—tbOy)) @ exp(~s(b®y)).

N4

1) F
\ —ir \ —Ss |— exp

b c(x) X

Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 18 / 34

The second property of this mapping is the simplicity of its Jacobian.

1
(0)
1
Jc(X) —
exp(sa+1(x © b))
(#0)
exp(sq(x @ b))
and we have
log [Je ()| = > _ si(x ® b)
i:b;ZO
=> ((1-b)©s(x®b));.
Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks

Notes

Remember that for the sake of simplicity we
make the assumption that all the 1s in b appear
consecutively first.

For any pair i, such that b; = 1,b; = 1, we
have

Ox; N Ox; 0 otherwise ’

dc Oxi {1 if i =j

which gives us a diagonal of ones in the top left
part of the Jacobian.

For any pair /,j such that b; = 0, b; = 0, we

have
does not depend
on Xx; because bj:() constant
— < w. r. t. Xj
ac; 0 _ —
- = o (x,-es’(b Ox) L 5o x))
8Xj 8Xj
_) exp(si(box)) ifi=j
o otherwise ’

so the bottom right part of the Jacobian is a
diagonal with terms exp(s;(x ® b)).

19 /34

Francois Fleuret

dim = 6

[oa}
n o

= torch.randn(1, dim).requires_grad_()
torch.zeros(1, dim)

bl:, :dim//2] = 1.0

s = nn.Sequential(nn.Linear(dim, dim), nn.Tanh())

t
|

(]
]

Flexing a bit

j = torch.cat([autograd.grad(c_k, x, retain_graph=True) [0] for c_k in c[0]])

print(j)
prints

tensor ([[

1.
[o.
[o.
[o.
[-o0.
[o.

0000,
0000,
0000,
4001,
1756,
0875,

= nn.Sequential(nn.Linear(dim, dim), nn.Tanh())

0.0000, 0.0000, 0.0000, 0.0000, O
1.0000, 0.0000, 0.0000, 0.0000, O
0.0000, 1.0000, 0.0000, 0.0000, O
-0.3774, -0.9410, 1.0074, 0.0000, O
0.0409, 0.0808, 0.0000, 1.2412, O
-0.3724, -0.1542, 0.0000, 0.0000, O

Deep learning / 10.3. Non-volume preserving networks

b*xx+ (1 -b) * (x * torch.exp(s(b * x)) + t(b * x))

.0000],
.0000],
.0000],
.0000],
.0000],
.618611)

20/ 34

To recap, with f(k), k=1,..., K coupling layers,

f=FfKo...ofD)

and x,(f’) = X, and x,(,k) = f(K) (x,(,k_l)), we train by minimizing

7=-2

XISK)H2 + dlog 27r> + i log ‘Jf(k) (X,(,k—l)>) ’
k=1

with
o8 [(9] = 37 (1 6) © 59 (x5

) 1
1

And to sample we just need to generate Z ~ ./ (0, /) and compute X.

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 21 / 34

Notes

Since all coupling layers are invertible, f ! can
be computed. So at generation time, we draw a
sample Z ~ #/(0,1) and compute X = f~!(2)

A coupling layer can be implemented with

class NVPCouplinglayer(nn.Module) :
def __init__(self, map_s, map_t, b):
super() .__init__Q)
self .map_s = map_s
self .map_t = map_t
self.register_buffer('b', b.unsqueeze(0))

def forward(self, x, 1dj): # 1dj for log det Jacobian
s, t = self.map_s(self.b * x), self.map_t(self.b * x)
1dj = 1dj + ((1 - self.b) * s).sum(1)
y = self.b * x + (1 - self.b) * (torch.exp(s) * x + t)
return y, 1dj

def invert(self, y):

s, t = self.map_s(self.b * y), self.map_t(self.b * y)
return self.b * y + (1 - self.b) * (torch.exp(-s) * (y - t))

The forward here computes both the image of x and the update on the accumulated
determinant of the Jacobian, i.e.

(x,u) = (f(x),u+ log |Jr(x)]) .

Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 22 / 34

We can then define a complete network with one-hidden layer tanh MLPs for the s and

t mappings

class NVPNet (nn.Module):
def __init__(self, dim, hidden_dim, depth):
super () .__init__Q
b = torch.empty(dim)
self.layers = nn.ModuleList ()
for d in range(depth):
if d%2 == 0:
i = torch.randperm(b.numel()) [0:b.numel() // 2]
b.zero_()[i] = 1
else:
b=1-D
map_s nn.Sequential (nn.Linear(dim, hidden_dim), nn.Tanh(),
nn.Linear(hidden_dim, dim))
map_t = nn.Sequential(nn.Linear(dim, hidden_dim), nn.Tanh(),
nn.Linear (hidden_dim, dim))
self.layers.append (NVPCouplinglLayer (map_s, map_t, b.clone()))

def forward(self, x, 1dj):
for m in self.layers: x, 1dj = m(x, 1dj)
return x, 1dj

def invert(self, y):

for m in reversed(self.layers): y = m.invert(y)
return y

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks

Notes

Masks b are made in such a way that b are
generated at random, while p2rtl) — 1 _ p(@n)
It assures that all the components of the input
are changed. This is one out of many strategies
that can be used to ensure that the components
are modified.

23/ 34

And the log-proba of individual samples of a batch

def LogProba(x, 1dj):
log_.p = - 0.5 * (x**2 + math.log(2*pi)).sum(1l) + 1dj
return log_p

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 24 / 34

Training is achieved by maximizing the mean log-proba
batch_size = 100

model = NVPNet(dim = 2, hidden_dim = 2, depth = 4)
optimizer = optim.Adam(model.parameters(), 1lr = le-2)

for e in range(args.nb_epochs):

for input in train_input.split(batch_size):
output, 1ldj = model(input, 0)
loss = - LogProba(output, 1dj).mean()
model.zero_grad()
loss.backward()
optimizer.step()

Finally, we can sample according to px with

z = torch.randn(nb_generated_samples, 2)
model.invert(z)

>
I

Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 25 / 34

4 « Real 4 ¢ Real
« Fake . Fake

—6 6 —6 —4 -2 0 2 4 6
4 « Real 4 ¢ Real
« Fake . Fake

_1 B 71 -
—24 —24
73 B 73 -
—44 —44
6 4 S 0 2 4 6 6 a S 0 2 4 6
Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 26 / 34
Notes

We test this model on 2d synthetic distributions.
On each graph:

o the blue dots are sampled training points,

e the blue lines are circles deformed by the
“true” f,

o the red lines are circles deformed by the
trained model,

e The red dots are points sampled according
to the trained model.

The true density at the bottom-right is discon-
tinuous. It is obtained by sampling according to
a normal, and adding 1 if the x coordinate is
positive, and —1 otherwise. This is challenging
for the model which is continuous.

Dinh et al. (2016) apply this approach to convolutional layers by using bs consistent
with the activation map structure, and reducing the map size while increasing the
number of channels.

Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern
mask. On the right, a channel-wise masking. The squeezing operation reduces the 4 x 4 x 1 tensor
(on the left) into a 2 x 2 x 4 tensor (on the right). Before the squeezing operation, a checkerboard
pattern is used for coupling layers while a channel-wise masking pattern is used afterward.

(Dinh et al., 2016)

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks 27 / 34

Frangois Fleuret

They combine these layers by alternating masks, and branching out half of the channels

at certain points to forward them unchanged.

(a) In this alternating pattern, units which remain identical in one

(b) Factoring out variables.
transformation are modified in the next.

At each step, half the vari-
ables are directly modeled as
Gaussians, while the other
half undergo further transfor-
mation.

Figure 4: Composition schemes for affine coupling layers.

(Dinh et al., 2016)

Deep learning / 10.3. Non-volume preserving networks

28/ 34

The structure for generating images consists of

e X2 stages

X 3 checkerboard coupling layers,
a squeezing layer,

X 3 channel coupling layers,

a factor-out layer.

o X1 stage

e X4 checkerboard coupling layers
e a factor-out layer.

The s and t mappings get more complex in the later layers.

Frangois Fleuret Deep learning / 10.3. Non-volume preserving networks

29 / 34

Figure 7: Samples from a model trained on Imagenet (64 x 64).

(Dinh et al., 2016)

Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 30 / 34

Figure 8: Samples from a model trained on CelebA.

(Dinh et al., 2016)

31/ 34

Deep learning / 10.3. Non-volume preserving networks

Francois Fleuret

A
L i
\ I ’ ' ;

T,

Figure 9: Samples from a model trained on LSUN (bedroom category).

(Dinh et al., 2016)

Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 32 /34

Figure 10: Samples from a model trained on LSUN (church outdoor category).

(Dinh et al., 2016)

Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 33 /34

Figure 6: Manifold generated from four examples in the dataset. Clockwise from top left: CelebA,
Imagenet (64 x 64), LSUN (tower), LSUN (bedroom).

(Dinh et al., 2016)

Francois Fleuret Deep learning / 10.3. Non-volume preserving networks 34 / 34

References

L. Dinh, D. Krueger, and Y. Bengio. NICE: non-linear independent components estimation. CoRR,
abs/1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. CoRR,
abs/1605.08803, 2016.

G. Papamakarios, E. Nalisnick, D. Rezende, S. Mohamed, and B. Lakshminarayanan. Normalizing
flows for probabilistic modeling and inference. CoRR, abs/1912.02762, 2019.

	Non-Volume Preserving networks
	References

