Deep learning

11.1. Generative Adversarial Networks

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

A popular approach to learn high-dimension densities are the Generative
Adversarial Networks proposed by Goodfellow et al. (2014), where two
networks are trained jointly:

e A discriminator D to classify samples as “real” or “fake”,

 a generator G to map a [simple] fixed distribution to samples that fool D.

What D wants

e

':‘ " v D “ "
1 — “fake

¥

N e

The approach is adversarial since the two networks have antagonistic objectives.

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks

Notes

The role of the discriminator is to detect if a
sample is from the real world or was generated.
The role of the generator is to produce realistic
samples: given some random noise following a
fixed and simple distribution, it should produce
samples which are realistic in the sense that they
fool the discriminator.

So these two models have an opposite objec-
tive: the discriminator is optimized to minimize
a standard classification loss, and the generator
is optimized to maximize that loss.

A key point is that the generator maximize that
loss through the discriminator. Hence the back-
ward pass will propagate the gradient of the loss
through the discriminator to the generator, and
the generator will be constantly updated during
training to remove any statistical structure that
was picked up by the discriminator as specific to
the synthetic samples.

1/30

Let 2 be the signal space, and D the latent space dimension.

e The generator
G:RP -
is trained so that [ideally] if it gets a random normal-distributed Z as input, it

produces a sample following the data distribution as output.

o The discriminator
D: 2 —[0,1]

is trained so that if it gets a sample as input, it predicts if it comes from G or from
the real data.

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 2/30

Notes

In what follows, the generator takes as input a
random sample following a normal distribution,
but another choice is possible.

The discriminator gets as input a sample in 2" and
computes an estimate of the posterior probability
for it to be “real.”

Given a set of ‘“real points”
Xp~py, n=1... N,
and if G is fixed, we can train D by generating
zn~ N0, 1), n=1,...,N,

building a two-class data-set

2 ={ (x.1),..., (. 1), (6(21),0), .., (G(zn),0) },

~
real samples ~p fake samples ~pig

where 1 is the true data distribution, and pg is the distribution of G(Z) with
Z ~ #(0,1), and minimizing the binary cross-entropy

N N
Z(D) = —ﬁ <Z log D(xn) + > _ log(1 — D(G(z,,)))>
n=1 n=1

_ _% (EXNM [Iog D(X)] + B g [Iog(l - D(X))]) .

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 3/30

The situation is slightly more complicated since we also want to optimize G to maximize
D’s loss.

Goodfellow et al. (2014) provide an analysis of the resulting equilibrium of that strategy.

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 4 /30

Let's define the loss of G
Z6(D,G) = Ex., [log D(X)] + Exe i [Iog(l - D(X))}

which is high if D is doing a good job (low cross entropy), and low if G fools D.

Our ultimate goal is a G* that fools any D, so

G* = argmin max Zg(D, G).
G D

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 5/ 30

If we define the optimal discriminator for a given generator

D¢ = argmax Zg(D, G),
D

our objective becomes
G* = argmin Z;(Dg, G),
G

that is:

Find a G whose loss against its best adversary D¢, is low.

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 6 /30

We have
Z6(D, G) = Exeuy, | 10g D(X)| + Exwp | log(1 — D(X))]
— [1(x)10 D(x) + g (x) log(1 ~ D))o

Since
p(x)

arg;nax w(x)log d 4+ pg(x)log(l — d) m7

and
D¢ = argmax Zg(D, G),
D

if there is no regularization on D, we get

wroy p(x)
7o Pel) = e e

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 7 /30

So, since
p(x)

0 Bel) = L et

we get

Z6(D§, G) = Exvy | 10g DE(X)] + Fxyig | log(1 — DE(X)))]
p(X) . pe(X)
kel R Ly 7]

+ +
= Dke (MH%)%-]DKL (MG %) — log4

= 2Djs (i, ug) — log 4

= Exu {Iog

where D g is the Jensen-Shannon Divergence, a standard similarity measure between

distributions.

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks

Notes

We show here that a low value of ¥g(D¢, G),
which is the quantity that the generator aims
at minimizing, corresponds to a low value of
the Jensen-Shannon divergence between the true
distribution and the one of the generated samples.
Hence the generator is optimized to minimize
this divergence, so to make the two distributions
similar.

Intuitively, if a generator is good against all dis-
criminators, it cannot have at any points x a
probability density different from the true data
density. If an x is more likely under p than under
G, then a discriminator could do slightly better
than random in predicting x to be real, and vice-
versa.

8/ 30

To recap: if there is no capacity limitation for D, and if we define
Z6(D,G) = Ex~y[log D(X) | + Exwyg | log(1 — D(X)) |,

computing
G* = argmin mSXEG(D, G)
G

amounts to compute
G" = arg(r;nin D s (1, pG),

where DD g is a reasonable similarity measure between distributions.

Although this derivation provides a nice formal framework, in practice D
is not “fully” optimized to [come close to] D¢ when optimizing G.

In the toy example that follows, we alternate gradient steps to improve G and D.

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 9/30

For our example, we take D = 8, and 2" = R2.

z_dim = 8
nb_hidden = 100

model_G = nn.Sequential(nn.Linear(z_dim, nb_hidden),
nn.RelLU(),
nn.Linear (nb_hidden, 2))

model D = nn.Sequential(nn.Linear(2, nb_hidden),
nn.RelLU(Q),
nn.Linear (nb_hidden, 1),

nn.Sigmoid())

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 10 / 30

Francois Fleuret

batch_size, 1lr = 10, 1e-3

optimizer_G = optim.Adam(model_G.parameters(), lr = 1r)
optimizer_D

optim.Adam(model_D.parameters(), lr = 1r)

for e in range(nb_epochs):

for t, real_batch in enumerate(real_samples.split(batch_size)):

z = real_batch.new(real_batch.size(0), z_dim) .normal_()
fake_batch = model_G(z)

D_scores_on_real = model_D(real_batch)
D_scores_on_fake = model_D(fake_batch)

if t%2 == 0:
loss = (1 - D_scores_on_fake).log() .mean()
optimizer_G.zero_grad()
loss.backward()
optimizer_G.step()
else:
loss = - (1 - D_scores_on_fake).log().mean() \
- D_scores_on_real.log() .mean()
optimizer_D.zero_grad()
loss.backward()
optimizer_D.step()

Deep learning / 11.1. Generative Adversarial Networks 11 /30

Notes

For even batches, the loss is only computed on
the fake samples to optimize the generator, and
D_scores_on_real is not used. For odd batches,
the loss is computed on all samples to optimize
the discriminator.

2d

.+ Rel 4 - « i+ Rel 4
" . Fake

8d

.+ Rel 4 . Rel 4
- Fake . . Fake

. Rl
. Fake

32d

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 12 /30

Notes

Each row correspond to a dimension of the input
to the generator, and each column to a synthetic
2d distribution. The blues points are sampled
according to the real distribution, and the red
points are generated with the trained generator.
A synthetic point is generated by sampling from
a Gaussian distribution, and passing it to the
generator to produce a point in R?,

We can see that when the dimension of the space
the generator operates on is higher, the resulting
distribution is closer to the real one.

The last example (far right) is more difficult be-
cause there is a discontinuity in the target distri-
bution.

Frangois Fleuret

In more realistic settings, the fake samples may be initially so “unrealistic” that the
response of D saturates. That causes the loss for G

fx~ug | log(1 — D(X))]

to be far in the exponential tail of D’s sigmoid, and have zero gradient since
log(1 + €) ~ € does not correct it in any way.

Goodfellow et al. suggest to replace this term with a non-saturating cost
~Bxpg | log(D(X))]

so that the log fixes D's exponential behavior. The resulting optimization problem has
the same optima as the original one.

A The loss for D remains unchanged.

Deep learning / 11.1. Generative Adversarial Networks 13 /30

Francois Fleuret

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

(Goodfellow et al., 2014)

Deep learning / 11.1. Generative Adversarial Networks

14 /30

Deep Convolutional GAN

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 15 / 30

Frangois Fleuret

“We also encountered difficulties attempting to scale GANs using CNN
architectures commonly used in the supervised literature. However, after
extensive model exploration we identified a family of architectures that

resulted in stable training across a range of datasets and allowed for training
higher resolution and deeper generative models.”

(Radford et al., 2015)

Deep learning / 11.1. Generative Adversarial Networks

16 / 30

Radford et al. converged to the following rules:

e Replace pooling layers with strided convolutions in D and strided transposed
convolutions in G,

e use batchnorm in both D and G,
e remove fully connected hidden layers,
e use RelLU in G except for the output, which uses Tanh,

e use LeakyRelLU activation in D for all layers.

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 17 / 30

Stride 2|

CONV 2

CONV 3 64

CONV 4 -
G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

(Radford et al., 2015)

We can have a look at the reference implementation provided in

https://github.com/pytorch/examples.git

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 18 / 30

https://github.com/pytorch/examples.git

default nz = 100, ngf = 64

class Generator(nn.Module):
def __init__(self, ngpu):

super () .__init__Q)

self.ngpu = ngpu

self.main = nn.Sequential(
input is Z, going into a convolution
nn.ConvIranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d (ngf * 8),
nn.ReLU(True),
state size. (ngf*8) x 4 x 4
nn.ConvIranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d (ngf * 4),
nn.ReLU(True),
state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d (ngf * 2),
nn.ReLU(True),
state size. (ngf*2) x 16 x 16
nn.ConvIranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d (ngf),
nn.ReLU(True),
state size. (ngf) x 32 x 32
nn.ConvIranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
state size. (nc) x 64 x 64

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 19 / 30

default nz = 100, ndf = 64

class Discriminator(nn.Module) :
def __init__(self, ngpu):

super () .__init__Q

self.ngpu = ngpu

self.main = nn.Sequential(
input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d (ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d (ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d (ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid ()

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 20 / 30

Francois Fleuret

custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') !'= -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)

criterion = nn.BCELoss()

fixed_noise = torch.randn(opt.batchSize, nz, 1, 1, device=device)
real_label = 1
fake_label = 0

setup optimizer

optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.betal, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.betal, 0.999))

Deep learning / 11.1. Generative Adversarial Networks 21 / 30

Francois Fleuret

HEHHH R HAH R R AR H AR R RS

(1) Update D network: maximize log(D(x)) + log(l - D(G(z)))

HEFHHAFHHAFHBHFH RS HHRRRHBSH
train with real
netD.zero_grad()

real_cpu = datal[0].to(device)
batch_size = real_cpu.size(0)

label = torch.full((batch_size,), real_label, device=device)

output = netD(real_cpu)

errD_real = criterion(output, label)
errD_real.backward()

D_x = output.mean().item()

train with fake

noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)

label.fill_(fake_label)

output = netD(fake.detach())

errD_fake = criterion(output, label)
errD_fake.backward ()

D_G_zl = output.mean().item()

errD = errD_real + errD_fake

optimizerD.step()

Deep learning / 11.1. Generative Adversarial Networks

22 /30

HESHHHHHHAHHH AR B RS H B RS HHERH

(2) Update G network: maximize log(D(G(z)))
HEHHHHAHHHHAHBHHAH R HAH R RS

netG.zero_grad()

label.fill_(real_label) # fake labels are real for generator cost
output = netD(fake)

errG = criterion(output, label)

errG.backward()

D_G_z2 = output.mean().item()

optimizerG.step()

Note that this update implements the — log(D(G(z))) trick.

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 23 / 30

Real images from LSUN'’s “bedroom” class.

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 24 / 30

Fake images after 1 epoch (3M images)

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 25 / 30

Notes

The images shown here were generated with the
reference code and with the Z kept unchanged
across epochs: at each epoch, for visualization
purposes, the generator takes as input the very
same random values.

What is interesting to notice is that the overall
semantic of the images is kept: location of win-
dows, main colors, etc.

Fake images after 20 epochs

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 26 / 30

Training a standard GAN often results in two pathological behaviors:

e Oscillations without convergence. Contrary to standard loss minimization, we have
no guarantee here that it will actually decrease.

e The infamous “mode collapse”, when G models very well a small sub-population,
concentrating on a few modes.

Additionally, performance is hard to assess. Two standard measures are the Inception
Score (Salimans et al., 2016) and the Fréchet Inception Distance (Heusel et al., 2017),
but assessment is often a “beauty contest”.

Francois Fleuret Deep learning / 11.1. Generative Adversarial Networks 27 / 30

Notes

The Inception Score checks that when gener-
ated images are classified by an inception model
(Szegedy et al., 2015) the estimated posterior
distribution of classes is similar to the real class
distribution, which in particular penalizes a miss-
ing class.

The Fréchet Inception Distance looks at the dis-
tributions of the features in one of the feature
maps of the inception model, for the real and
synthetic samples, and estimate their similarity
under a Gaussian model.

(Brock et al., 2018)

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 28 / 30

(Brock et al., 2018)

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 29 / 30

Notes

To make sure that the generator did not learn
by heart the training set, Brock et al. compare
a generated sample (top left) with “its closest
ones” in the training set.

(Karras et al., 2018)

Frangois Fleuret Deep learning / 11.1. Generative Adversarial Networks 30/ 30

References

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image
synthesis. CoRR, abs/1809.11096, 2018.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. CoRR, abs/1406.2661, 2014.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two
time-scale update rule converge to a local nash equilibrium. CoRR, abs/1706.08500, 2017.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. CoRR, abs/1812.04948, 2018.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and X. Chen. Improved
techniques for training GANs. In Neural Information Processing Systems (NIPS), pages
2234-2242, 2016.

C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture
for computer vision. CoRR, abs/1512.00567, 2015.

	Deep Convolutional GAN
	References

