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All the models we have seen so far model a density in high dimension and
provide means to sample according to it, which is useful for synthesis only.

However, most of the practical applications require the ability to sample a
conditional distribution. E.g.:

• Next frame prediction.

• “in-painting”,

• segmentation,

• style transfer.

This would in particular address some of the shortcomings we saw in lecture 7.3.
“Denoising autoencoders”.
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Notes

The following applications require to condition
the distribution with a signal:

• Next frame prediction where a frame is
sampled given the preceding frames.

• Image “in-painting”, where the missing
part of an image is sampled given the
available one.

• Semantic segmentation, where the label
map is sampled given the image.

• Style transfer, where a picture in a certain
style (e.g. à la Renoir), is sampled given
the same image in another style (e.g. à la
Picasso).

For all these these applications, the task goes be-
yond sampling according to a certain distribution:
one must have a way to condition the distribution
according to an input signal.



The Conditional GAN proposed by Mirza and Osindero (2014) consists of
parameterizing both G and D by a conditioning quantity Y .

V (D,G) = E(X ,Y )∼µ

[
logD(X ,Y )

]
+ EZ∼𝒩 (0,I ),Y∼µY

[
log(1−D(G(Z ,Y ),Y ))

]
,
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To generate MNIST characters, with

Z ∼ 𝒰
(
[0, 1]100

)
,

and conditioned with the class y , encoded as a one-hot vector of dimension 10, the
model is
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Notes

In the work of Mirza and Osindero (2014), the
generator takes as input

• a random vector z of dimension 100 whose
components are uniformly distributed in
[0, 1], and

• a conditioning one-hot encoding vector y
of the class. This vector is of dimension 10
with zeros everywhere except at the index
equal to the class of the sample, where it
is 1.

The discriminator takes as input

• the same conditioning vector y as the
generator, and

• a sample x which is either a sample
generated by the generator, or a real
sample from the training dataset.



Model MNIST
DBN [1] 138± 2

Stacked CAE [1] 121± 1.6
Deep GSN [2] 214± 1.1

Adversarial nets 225± 2
Conditional adversarial nets 132± 1.8

Table 1: Parzen window-based log-likelihood estimates for MNIST. We followed the same procedure as [8]
for computing these values.

The discriminator maps x to a maxout [6] layer with 240 units and 5 pieces, and y to a maxout layer
with 50 units and 5 pieces. Both of the hidden layers mapped to a joint maxout layer with 240 units
and 4 pieces before being fed to the sigmoid layer. (The precise architecture of the discriminator
is not critical as long as it has sufficient power; we have found that maxout units are typically well
suited to the task.)

The model was trained using stochastic gradient decent with mini-batches of size 100 and ini-
tial learning rate of 0.1 which was exponentially decreased down to .000001 with decay factor of
1.00004. Also momentum was used with initial value of .5 which was increased up to 0.7. Dropout
[9] with probability of 0.5 was applied to both the generator and discriminator. And best estimate of
log-likelihood on the validation set was used as stopping point.

Table 1 shows Gaussian Parzen window log-likelihood estimate for the MNIST dataset test data.
1000 samples were drawn from each 10 class and a Gaussian Parzen window was fitted to these
samples. We then estimate the log-likelihood of the test set using the Parzen window distribution.
(See [8] for more details of how this estimate is constructed.)

The conditional adversarial net results that we present are comparable with some other network
based, but are outperformed by several other approaches – including non-conditional adversarial
nets. We present these results more as a proof-of-concept than as demonstration of efficacy, and
believe that with further exploration of hyper-parameter space and architecture that the conditional
model should match or exceed the non-conditional results.

Fig 2 shows some of the generated samples. Each row is conditioned on one label and each column
is a different generated sample.

Figure 2: Generated MNIST digits, each row conditioned on one label

4.2 Multimodal

Photo sites such as Flickr are a rich source of labeled data in the form of images and their associated
user-generated metadata (UGM) — in particular user-tags.

4

(Mirza and Osindero, 2014)
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Another option to condition the generator consists of making the parameter of its
batchnorm layers class-conditional (Dumoulin et al., 2016).

(Brock et al., 2018)
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Notes

When the batchnorm layers are class-specific in
each layer, batchnorm for a certain class moves
the mean and variance of activation maps to
certain values, and for other classes to other
values.
The work of Dumoulin et al. (2016) and Brock
et al. (2018) scaled-up GANs to large images.
This involved a lot of technical tricks, large
batches, and a lot computation.



(Brock et al., 2018)
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Image-to-Image translations
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The main issue to generate realistic signals is that the value X to predict may remain
non-deterministic given the conditioning quantity Y .

For a loss function such as MSE, the best fit is E(X |Y = y) which can be pretty
different from the MAP, or from any reasonable sample from µX |Y=y .

In practice, for images there is often remaining location indeterminacy that results into
a blurry prediction.

Sampling according to µX |Y=y is the proper way to address the problem.
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Notes

For image-to-image translation, the conditioning
quantity is no longer a single class but a full
image.
We saw in lecture 7.3. “Denoising autoencoders”
that the synthesis may produce blurry parts. For
instance, due to the uncertainty of the location
of a given object or part, the best MSE can do
is to average over all the locations of the object,
which generate a blurry signal.
The proper way to fix this issue and to produce
media with proper statistics, which can be ex-
pressed as fooling a discriminator, hence sampled
according to the posterior distribution µX|Y=y

modeled with a conditional generator.



Isola et al. (2016) use a GAN-like setup to address this issue for the “translation” of
images with pixel-to-pixel correspondence:

• edges to realistic photos,

• semantic segmentation,

• gray-scales to colors, etc.
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Real or fake pair?
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Real or fake pair?
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D tries to identify the fakes

Figure 2: Training a conditional GAN to predict aerial photos from
maps. The discriminator, D, learns to classify between real and
synthesized pairs. The generator learns to fool the discriminator.
Unlike an unconditional GAN, both the generator and discrimina-
tor observe an input image.

where G tries to minimize this objective against an ad-
versarial D that tries to maximize it, i.e. G∗ =
argminG maxD LcGAN (G,D).

To test the importance of conditioning the discrimintor,
we also compare to an unconditional variant in which the
discriminator does not observe x:

LGAN (G,D) =Ey∼pdata(y)[logD(y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(G(x, z))].
(2)

Previous approaches to conditional GANs have found it
beneficial to mix the GAN objective with a more traditional
loss, such as L2 distance [29]. The discriminator’s job re-
mains unchanged, but the generator is tasked to not only
fool the discriminator but also to be near the ground truth
output in an L2 sense. We also explore this option, using
L1 distance rather than L2 as L1 encourages less blurring:

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1]. (3)

Our final objective is

G∗ = argmin
G

max
D
LcGAN (G,D) + λLL1(G). (4)

Without z, the net could still learn a mapping from x to
y, but would produce deterministic outputs, and therefore
fail to match any distribution other than a delta function.
Past conditional GANs have acknowledged this and pro-
vided Gaussian noise z as an input to the generator, in addi-
tion to x (e.g., [39]). In initial experiments, we did not find

Encoder-decoder U-Net

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [34] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

this strategy effective – the generator simply learned to ig-
nore the noise – which is consistent with Mathieu et al. [27].
Instead, for our final models, we provide noise only in the
form of dropout, applied on several layers of our generator
at both training and test time. Despite the dropout noise, we
observe very minor stochasticity in the output of our nets.
Designing conditional GANs that produce stochastic out-
put, and thereby capture the full entropy of the conditional
distributions they model, is an important question left open
by the present work.

2.2. Network architectures

We adapt our generator and discriminator architectures
from those in [30]. Both generator and discriminator use
modules of the form convolution-BatchNorm-ReLu [18].
Details of the architecture are provided in the appendix,
with key features discussed below.

2.2.1 Generator with skips

A defining feature of image-to-image translation problems
is that they map a high resolution input grid to a high resolu-
tion output grid. In addition, for the problems we consider,
the input and output differ in surface appearance, but both
are renderings of the same underlying structure. Therefore,
structure in the input is roughly aligned with structure in the
output. We design the generator architecture around these
considerations.

Many previous solutions [29, 39, 19, 48, 43] to problems
in this area have used an encoder-decoder network [16]. In
such a network, the input is passed through a series of lay-
ers that progressively downsample, until a bottleneck layer,
at which point the process is reversed (Figure 3). Such a
network requires that all information flow pass through all
the layers, including the bottleneck. For many image trans-
lation problems, there is a great deal of low-level informa-
tion shared between the input and output, and it would be

(Isola et al., 2016)
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They define

V (D,G) = E(X ,Y )∼µ

[
logD(Y ,X )

]
+ EZ∼µZ ,X∼µX

[
log(1−D(G(Z ,X ),X ))

]
,

ℒL1 (G) = E(X ,Y )∼µ,Z∼𝒩 (0,I )

[
∥Y − G(Z ,X )∥1

]
,

and
G∗ = argmin

G
max
D

V (D,G) + λℒL1 (G).

The term ℒL1 pushes toward proper pixel-wise prediction, and V makes the generator
prefer realistic images to better fitting pixel-wise.

!
Note that contrary to Mirza and Osindero’s convention, here X is the
conditioning quantity and Y the signal to generate.
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For G, they start with Radford et al. (2015)’s DCGAN architecture and add skip
connections from layer i to layer D − i that concatenate channels.
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images that fool D

D tries to identify the fakes

Figure 2: Training a conditional GAN to predict aerial photos from
maps. The discriminator, D, learns to classify between real and
synthesized pairs. The generator learns to fool the discriminator.
Unlike an unconditional GAN, both the generator and discrimina-
tor observe an input image.

where G tries to minimize this objective against an ad-
versarial D that tries to maximize it, i.e. G∗ =
argminG maxD LcGAN (G,D).

To test the importance of conditioning the discrimintor,
we also compare to an unconditional variant in which the
discriminator does not observe x:

LGAN (G,D) =Ey∼pdata(y)[logD(y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(G(x, z))].
(2)

Previous approaches to conditional GANs have found it
beneficial to mix the GAN objective with a more traditional
loss, such as L2 distance [29]. The discriminator’s job re-
mains unchanged, but the generator is tasked to not only
fool the discriminator but also to be near the ground truth
output in an L2 sense. We also explore this option, using
L1 distance rather than L2 as L1 encourages less blurring:

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1]. (3)

Our final objective is

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G). (4)

Without z, the net could still learn a mapping from x to
y, but would produce deterministic outputs, and therefore
fail to match any distribution other than a delta function.
Past conditional GANs have acknowledged this and pro-
vided Gaussian noise z as an input to the generator, in addi-
tion to x (e.g., [39]). In initial experiments, we did not find

Encoder-decoder U-Net

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [34] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

this strategy effective – the generator simply learned to ig-
nore the noise – which is consistent with Mathieu et al. [27].
Instead, for our final models, we provide noise only in the
form of dropout, applied on several layers of our generator
at both training and test time. Despite the dropout noise, we
observe very minor stochasticity in the output of our nets.
Designing conditional GANs that produce stochastic out-
put, and thereby capture the full entropy of the conditional
distributions they model, is an important question left open
by the present work.

2.2. Network architectures

We adapt our generator and discriminator architectures
from those in [30]. Both generator and discriminator use
modules of the form convolution-BatchNorm-ReLu [18].
Details of the architecture are provided in the appendix,
with key features discussed below.

2.2.1 Generator with skips

A defining feature of image-to-image translation problems
is that they map a high resolution input grid to a high resolu-
tion output grid. In addition, for the problems we consider,
the input and output differ in surface appearance, but both
are renderings of the same underlying structure. Therefore,
structure in the input is roughly aligned with structure in the
output. We design the generator architecture around these
considerations.

Many previous solutions [29, 39, 19, 48, 43] to problems
in this area have used an encoder-decoder network [16]. In
such a network, the input is passed through a series of lay-
ers that progressively downsample, until a bottleneck layer,
at which point the process is reversed (Figure 3). Such a
network requires that all information flow pass through all
the layers, including the bottleneck. For many image trans-
lation problems, there is a great deal of low-level informa-
tion shared between the input and output, and it would be

(Isola et al., 2016)

Randomness Z is provided through dropout, and not as an additional input.
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The discriminator D is a regular convnet which scores overlapping patches of size
N × N and averages the scores for the final one.

This controls the network’s complexity, while allowing to detect any inconsistency of the
generated image (e.g. blurriness).
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Input Ground truth L1 cGAN L1 + cGAN

Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see
https://phillipi.github.io/pix2pix/ for additional examples.

L1 1x1 16x16 70x70 256x256

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (coforfulness) dimensions. The full 256x256 ImageGAN produces
results that are visually similar to the 70x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2). Please
see https://phillipi.github.io/pix2pix/ for additional examples.

put label maps. Combining all terms, L1+cGAN, performs
similarly well.

Colorfulness A striking effect of conditional GANs is
that they produce sharp images, hallucinating spatial struc-
ture even where it does not exist in the input label map. One
might imagine cGANs have a similar effect on “sharpening”
in the spectral dimension – i.e. making images more color-
ful. Just as L1 will incentivize a blur when it is uncertain
where exactly to locate an edge, it will also incentivize an
average, grayish color when it is uncertain which of several
plausible color values a pixel should take on. Specially, L1
will be minimized by choosing the median of of the con-
ditional probability density function over possible colors.
An adversarial loss, on the other hand, can in principle be-
come aware that grayish outputs are unrealistic, and encour-
age matching the true color distribution [14]. In Figure 7,
we investigate if our cGANs actually achieve this effect on
the Cityscapes dataset. The plots show the marginal distri-

butions over output color values in Lab color space. The
ground truth distributions are shown with a dotted line. It
is apparent that L1 leads to a narrower distribution than the
ground truth, confirming the hypothesis that L1 encourages
average, grayish colors. Using a cGAN, on the other hand,
pushes the output distribution closer to the ground truth.

3.3. Analysis of the generator architecture

A U-Net architecture allows low-level information to
shortcut across the network. Does this lead to better results?
Figure 5 compares the U-Net against an encoder-decoder on
cityscape generation U-Net. The encoder-decoder is created
simply by severing the skip connections in the U-Net. The
encoder-decoder is unable to learn to generate realistic im-
ages in our experiments, and indeed collapses to producing
nearly identical results for each input label map. The advan-
tages of the U-Net appear not to be specific to conditional
GANs: when both U-Net and encoder-decoder are trained

(Isola et al., 2016)
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put label maps. Combining all terms, L1+cGAN, performs
similarly well.

Colorfulness A striking effect of conditional GANs is
that they produce sharp images, hallucinating spatial struc-
ture even where it does not exist in the input label map. One
might imagine cGANs have a similar effect on “sharpening”
in the spectral dimension – i.e. making images more color-
ful. Just as L1 will incentivize a blur when it is uncertain
where exactly to locate an edge, it will also incentivize an
average, grayish color when it is uncertain which of several
plausible color values a pixel should take on. Specially, L1
will be minimized by choosing the median of of the con-
ditional probability density function over possible colors.
An adversarial loss, on the other hand, can in principle be-
come aware that grayish outputs are unrealistic, and encour-
age matching the true color distribution [14]. In Figure 7,
we investigate if our cGANs actually achieve this effect on
the Cityscapes dataset. The plots show the marginal distri-

butions over output color values in Lab color space. The
ground truth distributions are shown with a dotted line. It
is apparent that L1 leads to a narrower distribution than the
ground truth, confirming the hypothesis that L1 encourages
average, grayish colors. Using a cGAN, on the other hand,
pushes the output distribution closer to the ground truth.

3.3. Analysis of the generator architecture

A U-Net architecture allows low-level information to
shortcut across the network. Does this lead to better results?
Figure 5 compares the U-Net against an encoder-decoder on
cityscape generation U-Net. The encoder-decoder is created
simply by severing the skip connections in the U-Net. The
encoder-decoder is unable to learn to generate realistic im-
ages in our experiments, and indeed collapses to producing
nearly identical results for each input label map. The advan-
tages of the U-Net appear not to be specific to conditional
GANs: when both U-Net and encoder-decoder are trained

(Isola et al., 2016)
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input output input output

Map to aerial photoAerial photo to map

Figure 8: Example results on Google Maps at 512x512 resolution (model was trained on images at 256x256 resolution, and run convolu-
tionally on the larger images at test time). Contrast adjusted for clarity.

Input Ground truth Output Input Ground truth Output

Figure 11: Example results of our method on Cityscapes labels→photo, compared to ground truth.

(Isola et al., 2016)
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Input Ground truth Output Input Ground truth Output

Figure 12: Example results of our method on facades labels→photo, compared to ground truth

(Isola et al., 2016)
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Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day→night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges→handbags, compared to ground truth.

(Isola et al., 2016)
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Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day→night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges→handbags, compared to ground truth.

(Isola et al., 2016)
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Notes

The task here is to generate a color version of a
sketch image.
The training set was generated by taking real
images which were used as ground truth, and to
apply an edge detector on them to obtain the
input.



Input Ground truth Output Input Ground truth Output

Figure 15: Example results of our method on automatically detected edges→shoes, compared to ground truth.

Input Output Input Output Input Output Input Output

Figure 16: Example results of the edges→photo models applied to human-drawn sketches from [10]. Note that the models were trained on
automatically detected edges, but generalize to human drawings

(Isola et al., 2016)
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Notes

Once the generator was trained, it was then ap-
plied on sketches done by humans.



The main drawback of this technique is that it requires pairs of samples with
pixel-to-pixel correspondence.

In many cases, one has at its disposal examples from two densities and wants to
translate a sample from the first (“images of apples”) into a sample likely under the
second (“images of oranges”).
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We consider X r.v. on 𝒳 a sample from the first data-set, and Y r.v. on 𝒴 a sample for
the second data-set. Zhu et al. (2017) propose to train at the same time two mappings

G : 𝒳 → 𝒴

F : 𝒴 → 𝒳

such that

G(X ) ∼ µY ,

F ◦ G(X ) ≃ X .

Where the matching in density is characterized with a discriminator DY and the
reconstruction with the L1 loss. They also do this both ways symmetrically.
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Ŷ

X Y( X Y
(

G

F
X̂

(a) (b) (c)

cycle-consistency
loss

cycle-consistency
loss

DY DX
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Figure 3: (a) Our model contains two mapping functions G : X → Y and F : Y → X , and associated adversarial
discriminators DY and DX . DY encourages G to translate X into outputs indistinguishable from domain Y , and vice versa
for DX and F . To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: x → G(x) → F (G(x)) ≈ x, and (c) backward cycle-consistency loss: y → F (y) → G(F (y)) ≈ y

image cannot be distinguished from images in the target do-
main.

Image-to-Image Translation The idea of image-to-
image translation goes back at least to Hertzmann et al.’s
Image Analogies [18], who employ a nonparametric tex-
ture model [9] on a single input-output training image pair.
More recent approaches use a dataset of input-output exam-
ples to learn a parametric translation function using CNNs,
e.g. [31]. Our approach builds on the “pix2pix” framework
of Isola et al. [21], which uses a conditional generative ad-
versarial network [15] to learn a mapping from input to out-
put images. Similar ideas have been applied to various tasks
such as generating photographs from sketches [43] or from
attribute and semantic layouts [23]. However, unlike these
prior works, we learn the mapping without paired training
examples.

Unpaired Image-to-Image Translation Several other
methods also tackle the unpaired setting, where the goal is
to relate two data domains, X and Y . Rosales et al. [40]
propose a Bayesian framework that includes a prior based
on a patch-based Markov random field computed from a
source image, and a likelihood term obtained from multi-
ple style images. More recently, CoGAN [30] and cross-
modal scene networks [1] use a weight-sharing strategy to
learn a common representation across domains. Concurrent
to our method, Liu et al. [29] extends this framework with
a combination of variational autoencoders [25] and gen-
erative adversarial networks. Another line of concurrent
work [45, 48, 2] encourages the input and output to share
certain “content” features even though they may differ in
“style“. They also use adversarial networks, with additional
terms to enforce the output to be close to the input in a pre-
defined metric space, such as class label space [2], image
pixel space [45], and image feature space [48].

Unlike the above approaches, our formulation does not
rely on any task-specific, predefined similarity function be-

tween the input and output, nor do we assume that the input
and output have to lie in the same low-dimensional embed-
ding space. This makes our method a general-purpose solu-
tion for many vision and graphics tasks. We directly com-
pare against several prior and contemporary approaches in
Section 5.1.

Cycle Consistency The idea of using transitivity as a
way to regularize structured data has a long history. In
visual tracking, enforcing simple forward-backward con-
sistency has been a standard trick for decades [47]. In
the language domain, verifying and improving translations
via “back translation and reconsiliation” is a technique
used by human translators [3] (including, humorously, by
Mark Twain [50]), as well as by machines [16]. More
recently, higher-order cycle consistency has been used in
structure from motion [60], 3D shape matching [20], co-
segmentation [54], dense semantic alignment [63, 64], and
depth estimation [13]. Of these, Zhou et al. [64] and Go-
dard et al. [13] are most similar to our work, as they use a
cycle consistency loss as a way of using transitivity to su-
pervise CNN training. In this work, we are introducing a
similar loss to push G and F to be consistent with each
other. Concurrent with our work, in these same proceed-
ings, Yi et al. [58] independently use a similar objective
for unpaired image-to-image translation, inspired by dual
learning in machine translation [16].

Neural Style Transfer [12, 22, 51, 11] is another way
to perform image-to-image translation, which synthesizes a
novel image by combining the content of one image with
the style of another image (typically a painting) based on
matching the Gram matrix statistics of pre-trained deep fea-
tures. Our main focus, on the other hand, is learning the
mapping between two image collections, rather than be-
tween two specific images, by trying to capture correspon-
dences between higher-level appearance structures. There-
fore, our method can be applied to other tasks, such as

(Zhu et al., 2017)
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main.

Image-to-Image Translation The idea of image-to-
image translation goes back at least to Hertzmann et al.’s
Image Analogies [18], who employ a nonparametric tex-
ture model [9] on a single input-output training image pair.
More recent approaches use a dataset of input-output exam-
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a combination of variational autoencoders [25] and gen-
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work [45, 48, 2] encourages the input and output to share
certain “content” features even though they may differ in
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terms to enforce the output to be close to the input in a pre-
defined metric space, such as class label space [2], image
pixel space [45], and image feature space [48].

Unlike the above approaches, our formulation does not
rely on any task-specific, predefined similarity function be-

tween the input and output, nor do we assume that the input
and output have to lie in the same low-dimensional embed-
ding space. This makes our method a general-purpose solu-
tion for many vision and graphics tasks. We directly com-
pare against several prior and contemporary approaches in
Section 5.1.
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visual tracking, enforcing simple forward-backward con-
sistency has been a standard trick for decades [47]. In
the language domain, verifying and improving translations
via “back translation and reconsiliation” is a technique
used by human translators [3] (including, humorously, by
Mark Twain [50]), as well as by machines [16]. More
recently, higher-order cycle consistency has been used in
structure from motion [60], 3D shape matching [20], co-
segmentation [54], dense semantic alignment [63, 64], and
depth estimation [13]. Of these, Zhou et al. [64] and Go-
dard et al. [13] are most similar to our work, as they use a
cycle consistency loss as a way of using transitivity to su-
pervise CNN training. In this work, we are introducing a
similar loss to push G and F to be consistent with each
other. Concurrent with our work, in these same proceed-
ings, Yi et al. [58] independently use a similar objective
for unpaired image-to-image translation, inspired by dual
learning in machine translation [16].

Neural Style Transfer [12, 22, 51, 11] is another way
to perform image-to-image translation, which synthesizes a
novel image by combining the content of one image with
the style of another image (typically a painting) based on
matching the Gram matrix statistics of pre-trained deep fea-
tures. Our main focus, on the other hand, is learning the
mapping between two image collections, rather than be-
tween two specific images, by trying to capture correspon-
dences between higher-level appearance structures. There-
fore, our method can be applied to other tasks, such as

The loss optimized alternatively is

V ∗(G,F,DX ,DY ) =V (G,DY ,X ,Y ) + V (F,DX ,Y ,X )

+ λ
(
E
[
∥F(G(X ))− X∥1

]
+ E

[
∥G(F(Y ))− Y ∥1

])
where V is a quadratic loss, instead of the usual log (Mao et al., 2016)

V (G,DY ,X ,Y ) = E
[
(DY (Y )− 1)2

]
+ E

[
DY (G(X ))2

]
.

The generator is from Johnson et al. (2016), an updated version of Radford et al.
(2015)’s DCGAN, with plenty of specific tricks, e.g. using an history of generated
images (Shrivastava et al., 2016).
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Notes

The loss has four terms:

• V (G,DY ,X ,Y ) estimates hoe much a
signal X ∼ µX from 𝒳 brought back to 𝒴
by G looks like a signal from µY ,

• V (F,DX ,Y ,X ) estimates how much a
signal Y ∼ µY brought back to 𝒳 by F
looks like a signal from µX ,

• E
[
∥F(G(X )) − X∥1

]
, estimates how well

F ◦ G keeps an X ∼ µX unchanged, and

• E
[
∥G(F(Y )) − Y∥1

]
, estimates how well

G ◦ F keeps an Y ∼ µY unchanged.



Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks
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Figure 1: Given any two unordered image collections X and Y , our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Abstract
Image-to-image translation is a class of vision and

graphics problems where the goal is to learn the mapping
between an input image and an output image using a train-
ing set of aligned image pairs. However, for many tasks,
paired training data will not be available. We present an
approach for learning to translate an image from a source
domain X to a target domain Y in the absence of paired
examples. Our goal is to learn a mapping G : X → Y
such that the distribution of images from G(X) is indistin-
guishable from the distribution Y using an adversarial loss.
Because this mapping is highly under-constrained, we cou-
ple it with an inverse mapping F : Y → X and introduce a
cycle consistency loss to enforce F (G(X)) ≈ X (and vice
versa). Qualitative results are presented on several tasks
where paired training data does not exist, including collec-
tion style transfer, object transfiguration, season transfer,
photo enhancement, etc. Quantitative comparisons against
several prior methods demonstrate the superiority of our
approach.

1. Introduction
What did Claude Monet see as he placed his easel by the

bank of the Seine near Argenteuil on a lovely spring day
in 1873 (Figure 1, top-left)? A color photograph, had it
been invented, may have documented a crisp blue sky and
a glassy river reflecting it. Monet conveyed his impression
of this same scene through wispy brush strokes and a bright
palette.

What if Monet had happened upon the little harbor in
Cassis on a cool summer evening (Figure 1, bottom-left)?
A brief stroll through a gallery of Monet paintings makes it
possible to imagine how he would have rendered the scene:
perhaps in pastel shades, with abrupt dabs of paint, and a
somewhat flattened dynamic range.

We can imagine all this despite never having seen a side
by side example of a Monet painting next to a photo of the
scene he painted. Instead we have knowledge of the set of
Monet paintings and of the set of landscape photographs.
We can reason about the stylistic differences between these
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Input Input Input OutputOutputOutput

horse → zebra

zebra → horse

summer Yosemite → winter Yosemite 

apple → orange

orange → apple

winter Yosemite → summer Yosemite

Figure 13: Our method applied to several translation problems. These images are selected as relatively successful results
– please see our website for more comprehensive and random results. In the top two rows, we show results on object
transfiguration between horses and zebras, trained on 939 images from the wild horse class and 1177 images from the zebra
class in Imagenet [41]. The middle two rows show results on season transfer, trained on winter and summer photos of
Yosemite from Flickr. In the bottom two rows, we train our method on 996 apple images and 1020 navel orange images from
ImageNet.

(Zhu et al., 2017)
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While GANs are often used for their [theoretical] ability to model a distribution,
generating consistent samples is enough for image-to-image translation.

In particular, this application does not suffer much from mode collapse, as long as the
generated images “look nice”.

The key aspect of the GAN here is the “perceptual loss” that the discriminator
implements, more than the theoretical convergence to the true distribution.
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