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You want to hire someone, and you evaluate candidates by asking them ten
technical yes/no questions.

Would you feel confident if you interviewed one candidate and they make a
perfect score?

What about interviewing ten candidates and picking the best? What about
interviewing one thousand?

Here the candidates are our models and the questions are the training examples
used to pick the best one.
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With
Qn

k ∼ ℬ(0.5), n = 1, . . . , 1000, k = 1, . . . , 10,

independent standing for “candidate n answers question k correctly”, we have

∀n, P(∀k,Qn
k = 1) =

1

1024

and
P(∃n, ∀k,Qn

k = 1) ≃ 0.62.

So there is 62% chance that among 1, 000 candidates answering completely at
random, at least one will score perfectly.

Selecting a candidate based on a statistical estimator biases the said
estimator for that candidate. And you need a greater number of “competence
checks” if you have a larger pool of candidates.
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Notes

Here, we put the problem of selecting a candidate
with 10 binary questions in a mathematical way:
We consider 1,000 candidates answering the 10
questions. The probability of a candidate answer-
ing perfectly all the questions is 1/210, because

the total number of possible answer is 210 = 1024,
and only one of them corresponds to all good
answers, and consequently the probability to re-
spond incorrectly to at least one question is

1 − 1/210.

Since the responses of candidates are indepen-
dent events, the probability that they all respond
incorrectly is,(

1 − 1/210
)1000

= 0.376423 . . . .



Over and under-fitting, capacity. K -nearest-neighbors
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A simple classification procedure is the “K -nearest neighbors.”

Given
(xn, yn) ∈ RD × {1, . . . ,C}, n = 1, . . . ,N

to predict the y associated to a new x , take the yn of the closest xn:

n∗(x) = argmin
n

∥xn − x∥

f ∗(x) = yn∗(x).

This recipe corresponds to K = 1, and makes the empirical training error zero.
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K = 1
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Notes

The three disks correspond to three “training
points” in R2 of three different classes.
The colored areas show the prediction of a 1-NN
that classifies a point as being of the class of
the closest training points. For instance all the
points closest to the red dots than to the blue
and green are colored red.
In the case of an Euclidean space as here, given
xn, n = 1, . . . ,N, the set of points closer to
xn than to any of the xk , k ≠ n is called the
Voronoi cell of xn.



Under mild assumptions of regularities of µX ,Y , for N → ∞ the asymptotic error rate of
the 1-NN is less than twice the (optimal!) Bayes’ Error rate.

It can be made more stable by looking at the K > 1 closest training points, and taking
the majority vote.

If we let also K → ∞ “not too fast”, the error rate is the (optimal!) Bayes’ Error rate.

François Fleuret Deep learning / 2.2. Over and under fitting 6 / 25

Notes

The K -nearest neighbor rule assigns to a sample
the label of the K closest training samples fol-
lowing a majority vote: the most frequent class
among the K closest training samples “wins”.
It can be shown that when N → ∞ and when
K grows at roughly the square root of N (i.e.
grows slower than N), the asymptotic error rate
reaches the optimal Bayes’ error, because we look
at more and more samples, but they are more
and more geometrically localized.



Training set

Prediction (K=1)
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Notes

We consider a 2d toy example. Training points
are sampled uniformly in a square. The true class
is illustrated with the red disk: training samples
within the circle have label 1 and are depicted
as black dots, and training samples outside have
label 0 and are depicted as white dots.
The prediction of the 1-nearest-neighbor is shown
on the image below. The black area is the set of
points which are classified as being of class 1, and
the rest is the set of points which are classified
as being of class 0.
We can see that the classification is good inside
and outside the circle. But it is noisy at the
boundary, especially when the density of training
points is low.



Training set

Prediction (K=1)

François Fleuret Deep learning / 2.2. Over and under fitting 8 / 25

Notes

In this situation, we add noise to the training
labels and flip 10% of them at random, keeping
everything else the same.
The 1-nearest-neighbor results in noisy predic-
tions, since any flipped label flips the predictions
for all the point in the corresponding Voronoi
cell.
This can be mitigated by increasing K so that the
prediction remains unchanged in spite of some
labels being incorrect.



Training set

Votes (K=51) Prediction (K=51)
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Notes

Finding the best K can be done using another
set of samples which are generated the same way
as the training set.
Optimizing K consists in computing the accuracy
on the other set for different values of K and
keeping the one which achieves the lowest error.
This results here in picking K = 51.
The “Votes” picture depicts the number of votes
that a test point gets. Black corresponds to the
K closest training point being all of class 1 and
white to them being all of class 0. Gray levels
stand for intermediate counts.
The “Prediction” picture shows the majority de-
cision, which is much smoother than with K = 1:
there are no longer the artifacts due to the noise
in the training data.



Training set

Votes (K=51) Prediction (K=51)
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Notes

Unfortunately, this recipe does not work on a
slightly different data set.
The new data we are considering here correspond
to a ground truth composed two disks of different
radii inside which points have label 1.
The value K = 51 was appropriate when there
was only one disk, but is no longer here: the small
disk is completely erased in the final prediction.
This example is interesting because this raises
a philosophical issue: at which point should we
consider that structure is noise. If we look at
the training image without the red disks, the
training data of class 1 around the small disk
could perfectly be random noise.
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Notes

This graph shows the error rate of the prediction
estimated on the training examples (aka “train
error”) in red, and the error rate estimated on
another set of samples generated with the same
procedure, but that differs due to the random-
ness of the process (aka “test error”) in blue, for
different values of K . This is the setup with noise
in the training labels.
Regarding the train error, for K = 1, the train
error is 0 since each training point is predicted
as being of its own label. When K gets larger
(going from right to left), votes are counted in a
larger neighborhood, and the train error increases
since “noisy labels” are not predicted correctly.
At the limit K is the size of the training set and
the predictor has a constant response, equal to

the dominant class among training examples.
Regarding the test error, for K = 1, there is
no robustness to flipped training labels, which
contrary to what happen on the train data results
in a high error rate. When K increases, at first
the regularization helps and the error goes down,
until it get too strong and completely hide the
structure of the data. Contrary to the behavior
on the train data, the error hence is not mono-
tonic with K and there is an optimal value.
“Over-fitting” occurs when the model fits the
training data too well and models the noise of
the data (here small K).
“Under-fitting” occurs when the model is not flex-
ible enough to model the actual structure of the
data (here large K).



Over and under-fitting, capacity, polynomials
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Given a polynomial model

∀x , α0, . . . , αD ∈ R, f (x ;α) =
D∑

d=0

αdx
d .

and training points (xn, yn) ∈ R2, n = 1, . . . ,N, the quadratic loss is

ℒ (α) =
∑
n

(f (xn;α)− yn)
2

=
∑
n

(
D∑

d=0

αdx
d
n − yn

)2

=

∥∥∥∥∥∥∥
 x01 . . . xD1

...
...

x0N . . . xDN


 α0

...
αD

−

 y1
...
yN


∥∥∥∥∥∥∥
2

.

Hence, minimizing this loss is a standard quadratic problem, for which we have efficient
algorithms.
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Notes

A polynomial of degree D is parameterized by
D + 1 coefficients.
Given N training points (xn, yn), polynomial re-
gression consists of finding the coefficients of
the polynomial that minimize the quadratic loss
between the actual training points and the polyno-
mial prediction. The goal is to get each f (xn;α)
as close as possible [in a quadratic sense] to yn
for all n.
For the nth training point, the computation of
f (xn;α) can be written as a dot product in a ma-

trix form: we build the vector [1, xn, x
2
n , . . . , x

D
n ]

and we have

f (xn;α) =
D∑

d=0

αdx
d
n

=
[
1 xn x2

n . . . xD
n

]


α0

α1

.

.

.
αD−1

αD





argmin
α

∥∥∥∥∥∥∥
 x01 . . . xD1

...
...

x0N . . . xDN


 α0

...
αD

−

 y1
...
yN


∥∥∥∥∥∥∥
2

def fit_polynomial(D, x, y):
# Broadcasting magic
X = x[:, None] ** torch.arange(0, D + 1)[None]

# Least square solution
return torch.linalg.lstsq(X, y).solution
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Notes

Function fit_polynomial returns the coeffi-
cients of the polynomial after optimization.
The first step is to build the matrix containing
the power of the xn.
The second step builds a tensor of the yn values
for calling torch.linalg.lstsq. We ignore the
second returned value



D, N = 4, 100
x = torch.linspace(-math.pi, math.pi, N)
y = x.sin()
alpha = fit_polynomial(D, x, y)

X = x[:, None] ** torch.arange(0, D + 1)[None]

y_hat = X @ alpha

for k in range(N):
print(x[k].item(), y[k].item(), y_hat[k].item())
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Notes

Here, we fit a polynomial of degree 4 to the sin
function on [−π, π]. We build a vector x with
values uniformly spaced in [−π, π], and y as the
sin of x.
On the plot, the red curve is the sin function and
the blue one is the fitted polynomial of degree 4.



We can use this model to illustrate how the prediction changes when we increase the
degree or the regularization.
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Notes

We try here to approximate the “true functional”
depicted as a red curve, which is constant equal
to zero on [0, 0.5] and quadratic on [0.5, 1].
The red points are the training examples obtained
by taking x1, . . . , xn regularly spaced in [0, 1] and
computing the corresponding yn with an added
Gaussian noise.
The graphs show the fitting of polynomials of
increasing certain degrees. As expected, the re-
sulting mapping better fits the training points for
higher degrees (i.e. the blue curve gets closer to
the red dots).
For D = 4, the fitting starts going wrong, and an
oscillation appears. When the degree continues
to increase, we see that the fitting gets closer to
the data points, but starts diverging from the true
underlying structure of the data. Note that with
degree 9, the polynomial has as many coefficients
as there are training points, and consequently can
perfectly fit the training set.
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Notes

As for the K -NN, this graph shows the error rate
of the prediction estimated on the training exam-
ples (aka “train error”) in red, and the error rate
estimated on another set of samples generated
with the same procedure, but that differs due to
the randomness of the process (aka “test error”)
in blue, for different values of D.
When the degree is small, there is no flexibility at
all in the model and both training and test errors
are high. This corresponds to under-fitting.
As the degree increases, the polynomial better fits
the training data, which results in a lower train
error. The error reaches 0 for degree 9, when the
polynomial passes through all the training points.
On the test set the error decreases until degree
3, and start increasing again, which corresponds
to over-fitting



We can visualize the influence of the noise by generating multiple training sets
𝒟1, . . . ,𝒟M with different noise, and training one model on each.
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Notes

All the training sets are generated with the same
noise parameters, but differs due to the random-
ness of the sampling process.
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Notes

We fit one polynomial on each training set
𝒟1, . . . ,𝒟M , and draw them as blue curves.
When the degree is small (D ≤ 3), the polynomi-
als are concentrated and close to each other. As
the degree increases, they tend to diverge from
one another. When the degree is large (D ≥ 8),
the flexibility of the models can be seen through
the strong variations between the fitted polyno-
mials: different training sets lead to very different
predictors.
The variations between all these models is prob-
lematic as they serve the should be model of the
same underling “true” functional.



We can reformulate this control of the degree with a penalty

ℒ (α) =
∑
n

(f (xn;α)− yn)
2 +

∑
d

ld (αd )

where

ld (α) =

{
0 if d ≤ D or α = 0

+∞ otherwise.

Such a penalty kills any term of degree > D.

This suggests more subtle variants. For instance, to keep all this quadratic

ℒ (α) =
∑
n

(f (xn;α)− yn)
2 + ρ

∑
d

α2
d .
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Notes

The control of the degree can be formulated with
a penalty over the functional itself, to kill any
monomial whose coefficient is greater than D:
instead of manually look for a polynomial of de-
gree D, we can incorporate this constrain in the
loss itself.
This can also be formulated in a more gentle
manner by using a penalty term which is the
sum of the squares of the coefficients: instead
of preventing any monomial of degree greater
than D, it will tend to select polynomials whose
parameters are all close to zero.
The resulting least square problem can be formu-
lated as:

∑
n

(f (xn;α) − yn)
2 + ρ

∑
d

α
2
d

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



x0
1 . . . xD

n

.

.

.
.
.
.

x0
N . . . xD

N√
ρ

. . . √
ρ




α0

.

.

.
αD

 −



y0
.
.
.
yN
0

.

.

.
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

and solved as before with torch.linalg.lstsq.
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Notes

The following plots show the fitted polynomials
of degree 9 for decreasing values of ρ, the weight
of the regularization penalty.
At first, when ρ is large, high degrees are more pe-
nalized, and the polynomials themselves are con-
strained. When ρ gets smaller, we start observing
the same behavior as before with no penalization,
which is the situation where monomials with high
degrees can have a higher coefficients. The re-
sulted fitted polynomials are less similar because
each one models the noise in their respective
training data set. When ρ = 0, this corresponds
to no penalization at all.
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Notes

This graph shows the training and the test errors
as a function of the regularization parameter ρ.
When ρ is large (left part of the graph), the
learning is pushed toward polynomials with small
coefficients, so the training data matters less, and
both the training and test errors are large: this
is under-fitting.
When ρ is small (right part of the graph), the
polynomial is able to fit the training data very
well, which leads to a low train error, but a high
test error: this is over-fitting.



We define the capacity of a set of predictors as its ability to model an arbitrary
functional. This is a vague definition, difficult to make formal.

A mathematically precise notion is the Vapnik–Chervonenkis dimension of a set of
functions, which, in the Binary classification case, is the cardinality of the largest set
that can be labeled arbitrarily (Vapnik, 1995).

It is a very powerful concept, but is poorly adapted to neural networks. We will not say
more about it in this course.
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Notes

In the example of polynomial fitting, a polyno-
mial of large degree has more capacity than a
polynomial with a smaller degree. As we saw,
with degree 9, the polynomial could fit all the
training points. This does not mean that this is
a better model.



Although the capacity is hard to define precisely, it is quite clear in practice how to
modulate it for a given class of models.

In particular one can control over-fitting either by

• Reducing the space ℱ (less functionals, constrained or degraded optimization), or

• Making the choice of f ∗ less dependent on data (penalty on coefficients, margin
maximization, ensemble methods).
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Notes

Many practical methods allow to reduce the space
ℱ .
In deep learning, it can be done by choosing a
simpler neural network with fewer modules, or
fewer layers.
A criterion used for certain methods pushes the
functional away from the training points in a
metric sense (e.g. support vector machines).
Ensemble methods consists in training multiple
predictors, and at test time, averaging over all
the predictions to make the final decision.
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