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Deep learning models combine embeddings and dimension reduction operations.

They parametrize and re-parametrize multiple times the input signal into
representations that get more and more invariant and noise free.

To get an intuition of how this is possible, we consider here two standard
algorithms:

• K -means, and

• Principal Component Analysis (PCA).

We will illustrate these methods on our two favorite data-sets.
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Notes

An embedding is a projection of a signal into
a different space that usually aims at keeping
all the information. Dimension reduction is a
projection into a space of smaller dimension.
A input signal usually has a lot of nuisance in it:

• in computer vision, there can be
illumination changes, geometric pose,
occlusion, complex background, etc.

• in sound processing, there can be
reverberation, ambient noise, features of
the microphone, etc.

Prediction requires to go from the raw input
signal to a refined representation which no longer
depends on these nuisances.



MNIST data-set

28× 28 grayscale images, 60k train samples, 10k test samples.
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Notes

MNIST is a data set of grayscale images of digits.
The images are of size 28 × 28. There are 60, 000
train samples and 10, 000k test samples.



CIFAR10 data-set

32× 32 color images, 50k train samples, 10k test samples.

(Krizhevsky, 2009, chap. 3)
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Notes

CIFAR10 is a data set of RGB images of size
32 × 32. There are 50, 000 train samples and
10, 000 test samples. The classes are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship,
and truck.
This data set is more challenging than MNIST.



Given
xn ∈ RD , n = 1, . . . ,N,

and a fixed number of clusters K > 0, K -means tries to find K “centroids” that span
uniformly the training population.

Given a point, the index of its closest centroid is a good coding.
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Formally, [Lloyd’s algorithm for] K -means (approximately) solves

argmin
c1,...,cK∈RD

∑
n

min
k

∥xn − ck∥2.

This is achieved with a random initialization of c01 , . . . c
0
K followed by repeating until

convergence:

∀n, kt
n = argmin

k
∥xn − ctk∥ (1)

∀k, ct+1
k =

1

|n : kt
n = k|

∑
n:ktn=k

xn (2)

At every iteration, (1) each sample is associated to its closest centroid’s cluster, and (2)
each centroid is updated to the average of its cluster.
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Notes

In the K -means problem, we want to find K cen-
troids c1, . . . , cK such that the sum over all the
samples of their distance to the closest centroid
is minimal.
The complexity of the K -means problem is NP-
hard, so we only have heuristic algorithms to
approximate it.
The most used is Lloyd’s algorithm, an iterative
process which at each step:

• associates each sample to its closest
centroid,

• updates every centroid by taking the
average of all the samples which have been
associated to it.



−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

François Fleuret Deep learning / 2.5. Basic clusterings and embeddings 6 / 19

Notes

We illustrate the behavior of Lloyd’s algorithm
on a 2d synthetic toy example.
The top-left scatter plot show all the training
points. On the other scatter plots, the black dots
are the centroids, and all the samples belonging
to a given cluster are depicted with the same
color.
Here the centroids are initialized uniformly in
[−1, 1]2 which explain why after initialization
(second scatter plot of the first row) they are
“outside” the training data. Other strategies con-
sists in initializing the centroids with training
samples at random, or “carefully” chosen to start
with a small distance to minimize.
Over the iterations, the centroids get more and
more centered around the training points, and
in the end are very well dispatched among the
training population.



We can apply that algorithm to images from MNIST (1× 28× 28) or CIFAR10
(3× 32× 32) by considering them as vectors from R784 and R3072 respectively.

Centroids can similarly be visualized as images, and clustering can be done per-class, or
for all the classes mixed.
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Notes

To apply the K -means algorithm on images, we
represent each image as a vector by reshaping
the 28× 28 tensor for MNIST or 3× 32× 32 for
CIFAR10 into a 1d tensor of dimension 784 for
MNIST and 3072 for CIFAR10.
Once the centroids are learned, we can visualize
them as images by reconstructing the image by
reshaping the vector into the image of the right
dimension.



K = 1 K = 2 K = 4 K = 8 K = 16

K = 32
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Notes

The images show, for different values of K , the
centroids obtained on MNIST for each class sep-
arately, and for classes all together (bottom row
in each group).
These results are really pleasing:

• for separate classes, the centroids capture
different orientations, thickness and
morphology of the digit;

• when the algorithm is applied on all the
classes together, the classes themselves are
dispatched among several centroids. We
see that is capture some “pure” classes,
like 0, 6, or 2; and similar classes which
share common shapes, like 3 and 8, 9 and
1, 9 and 4.

These experiments also show that MNIST is a
simple data set, with an nice and easy structure.



K = 1 K = 2 K = 4 K = 8 K = 16

K = 32
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Notes

These images are the result of the exact same
experiment as before now on CIFAR10. We apply
the K -means algorithms on each class separately,
as well as on the full data set (last row). The
images are the centroids.
The very good behavior observed on MNIST does
not hold anymore. Even with 32 centroids, we
get meaningless blobs, although for some classes
like car and horse, we see a shape of the object.
The centroids which depict a clear image are
degenerated cases, where there is only one sample
in the cluster.



The Principal Component Analysis (PCA) aims also at extracting an information in a L2

sense. Instead of clusters, it looks for an “affine subspace”, i.e. a point and a basis,
that spans the data.

Given data-points
xn ∈ RD , n = 1, . . . ,N

(A) compute the average and center the data

x̄ =
1

N

∑
n

xn

∀n, x
(0)
n = xn − x̄

and then for t = 1, . . . ,D,

(B) pick the direction and project the data

vt = argmax
∥v∥=1

∑
n

(
v · x(t−1)

n

)2

∀n, x
(t)
n = x

(t−1)
n −

(
vt · x(t−1)

n

)
vt .
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Although this is a simple way to envision PCA, standard implementations rely on an
eigen decomposition. With

X =

 — x1 —
...

— xN —


the centered data points, we have

∑
n

(v · xn)2 =

∥∥∥∥∥∥∥
 v · x1

...
v · xN


∥∥∥∥∥∥∥
2

2

=
∥∥∥vX⊤

∥∥∥2
2

= (vX⊤)(vX⊤)⊤

= v(X⊤X )v⊤.

From this we can derive that v1, v2, . . . , vD are the eigenvectors of X⊤X ranked
according to [the absolute values of] their eigenvalues.
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Notes

In practice, to compute the PCA basis:

• we center the data by subtracting their
mean,

• we compute the eigen decomposition of
X⊤X where X with the matrix of the row
samples,

• we rank the eigenvectors according to the
absolute value of their corresponding
eigenvalue,

• v1 is the first vector of the PCA basis, v2
the second, etc.
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Notes

We illustrate the behavior of PCA on a 2d syn-
thetic toy example. The first basis vector goes
in the direction of maximum dispersion, and the
second one is orthogonal to the first one.



As for K -means, we can apply that algorithm to images from MNIST or CIFAR10 by
considering them as vectors.

For any sample x and any T , we can compute a reconstruction using T vectors from
the PCA basis, i.e.

x̄ +
T∑
t=1

(vt · (x − x̄))vt .
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Notes

T is the number of vectors from the PCA basis
that will be used to reconstruct the input sam-
ple. The vectors in the PCA basis are ranked in
decreasing order of the absolute value of their
eigenvalue.
Then, we can compare how close the recon-
structed sample is to the original one.



x̄ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
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Notes

We show the result of PCA applied to MNIST.
On the top image, x̄ is the mean of all samples of
class 1, the vt represent the eigenvectors. Gray is
for values around 0, white is positive, and black
negative.
It appears that the eigenvectors encode small ge-
ometric transformations such as rotations, trans-
lations, thickening.
The image below shows, for each input sample
(first column), its projection in the affine sub-
space:

• column 1: the original sample,

• column 2: the reconstruction with no basis
vector, so only the mean,

• column 3: the reconstruction with 1 basis
vector,

• column 4: the reconstruction with 2 basis
vectors,

• etc.

The more we increase the dimension of the space
(i.e. with more basis vector), the better we re-
construct the original signal. With twelve vectors,
we are able to reconstruct the digit pretty well.



x̄ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
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x̄ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
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Notes

We now illustrate the behavior of PCA on the
CIFAR10 data-set. As before, the top row display
the mean of the current class (here “horse”)
followed by the eigenvectors ranked in decreasing
order of absolute value of the eigenvalues.
The eigenvectors also encode some geometric
deformations which is visible with the black and
white areas, a bit like for Haar filters.
Although we can see that the reconstruction is
not as good as in the case of digits, and that
it is clear that “strong AI” is not going to be
achieved with PCA, the reconstruction does a
reasonable job, and in some cases, twelve basis
vectors are enough to reconstruct an image with
enough information for a human to recognize the
animal.



x̄ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
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Notes

The class “cat” is a difficult class in the CIFAR10
data set because it exhibits a lot of intra-class
variations: cats appears in a a wide range of poses
and view points, as opposed to others classes such
as “horse” or “frog”.
This is reflected here in both the eigenvectors
and the reconstructed patterns.



These results show that even crude embeddings capture something meaningful.
Changes in pixel intensity as expected, but also deformations in the “indexing” space
(i.e. the image plan).

However, translations and deformations damage the representation badly, and
“composition” (e.g. object on background) is not handled at all.
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These strengths and shortcomings provide an intuitive motivation for “deep neural
networks”, and the rest of this course.

We would like

• to use many encoding “of these sorts” for small local structures with limited
variability,

• have different “channels” for different components,

• process at multiple scales.

Computationally, we would like to deal with large signals and large training sets, so we
need to avoid super-linear cost in one or the other.
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