
Deep learning

3.5. Gradient descent

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

We saw that training consists of finding the model parameters minimizing an
empirical risk or loss, for instance the mean-squared error (MSE)

ℒ (w , b) =
1

N

∑
n

(f (xn;w , b)− yn)
2 .

Other losses are more fitting for classification, certain regression problems, or
density estimation. We will come back to this.

So far we minimized the loss either with an analytic solution for the MSE, or
with ad hoc recipes for the empirical error rate (k-NN and perceptron).

François Fleuret Deep learning / 3.5. Gradient descent 1 / 13

Notes

We have seen in lecture 3.4. “Multi-Layer Per-
ceptrons” that we can stack multi-dimensional
perceptrons to a multi-layer perceptron, which
has very good approximation properties.
But a core question remains: how do we train
such a model? In each of the modules, there are
weights and biases, and we need a way of finding
the adequate values for those parameters.

There is generally no ad hoc method. The logistic regression for instance

Pw (Y = 1 | X = x) = σ(w · x + b), with σ(x) =
1

1 + e−x

leads to the loss
ℒ (w , b) = −

∑
n

log σ(yn(w · xn + b))

which cannot be minimized analytically.

The general minimization method used in such a case is the gradient descent.

François Fleuret Deep learning / 3.5. Gradient descent 2 / 13

Given a functional

f : RD → R
x 7→ f (x1, . . . , xD),

its gradient is the mapping

∇f : RD → RD

x 7→
(

∂f

∂x1
(x), . . . ,

∂f

∂xD
(x)

)
.

François Fleuret Deep learning / 3.5. Gradient descent 3 / 13

Notes

The gradient is defined for a function which goes
to a 1D space, and associates to the input the
vector composed of the partial derivatives. Its
components quantify how much each input influ-
ences locally the value of f .

To minimize a functional
ℒ : RD → R

the gradient descent uses local linear information to iteratively move toward a (local)
minimum.

For w0 ∈ RD , consider an approximation of ℒ around w0

ℒ̃w0 (w) = ℒ (w0) +∇ℒ (w0)
⊤(w − w0) +

1

2η
∥w − w0∥2.

Note that the chosen quadratic term does not depend on ℒ .

We have

∇ℒ̃w0 (w) = ∇ℒ (w0) +
1

η
(w − w0),

which leads to
argmin

w
ℒ̃w0 (w) = w0 − η∇ℒ (w0).

François Fleuret Deep learning / 3.5. Gradient descent 4 / 13

Notes

Here, ℒ goes from the parameter space RD to
the loss space. So in the case of the MLP, D is
the total number of parameters and ℒ would be
a quantity such as the MSE.
The minimum of ℒ̃ is achieved when “moving”
from w0 in a direction opposite to the gradient.
The quadratic term makes it explicit how far the

linear approximation of the loss can be trusted.
Formulating the gradient descent with this linear
approximation opens the way to more sophisti-
cated extensions, such as natural gradient de-
scent, which replaces the quadratic term by a
problem specific one, like when the natural met-
ric is not Euclidean (e.g. space of distributions).

The resulting iterative rule, which goes to the minimum of the approximation at the
current location, takes the form:

wt+1 = wt − η∇ℒ (wt),

which corresponds intuitively to “following the steepest descent”.

This [most of the time] eventually ends up in a local minimum, and the choices of w0

and η are important.

François Fleuret Deep learning / 3.5. Gradient descent 5 / 13

Notes

Here wt is the value of the parameters of the
model at iteration t of the training, and the new
value of the parameter is wt+1, obtained by sub-
tracting η∇ℒ (wt) from wt , moving in the “the
steepest descent”.
In practice, the gradient descent algorithm con-
sists of:

• Initializing the parameters, often randomly:
this is an important element in deep
learning, which influences the training a

lot, both regarding the convergence and
the final performance.

• at every step, the gradient of the loss w.r.t.
the current parameter is computed, and
the parameters are “moved a little bit” in
the opposite direction of the gradient, to
make the loss go down.

The choice of w0 (where we start from) and η
(the step size, how much we move at each step,
which can depend on t) is very important.

η = 0.125

w0

ℒℒ̃

w1

ℒℒ̃

w2

ℒℒ̃

w3

ℒℒ̃

w4

ℒℒ̃

w5

ℒℒ̃

w6

ℒℒ̃

w7

ℒℒ̃

w8

ℒℒ̃

w9

ℒℒ̃

w10

ℒℒ̃

w11

ℒℒ̃

François Fleuret Deep learning / 3.5. Gradient descent 6 / 13

Notes

We illustrate the gradient descent algorithm with
a parameter space of dimension 1:

• the black curve represents the loss ℒ , and
the goal is to find the w which minimizes
it;

• w0 is the initial value of the parameter;

• the red curve is the quadratic
approximation ℒ̃ of the loss ℒ ;

• at each iteration, the new value of the
parameter is the value that minimize ℒ̃ ,
i.e. the vertex of the parabola.

On this example, w0 and η lead to properly reach-
ing the minimum of ℒ .

η = 0.125

w0

ℒ̃ℒ

w1

ℒ̃ℒ

w2

ℒ̃ℒ

w3

ℒ̃ℒ

w4

ℒ̃ℒ

w5

ℒ̃ℒ

w6

ℒ̃ℒ

w7

ℒ̃ℒ

w8

ℒ̃ℒ

w9

ℒ̃ℒ

w10

ℒ̃ℒ

w11

ℒ̃ℒ

François Fleuret Deep learning / 3.5. Gradient descent 7 / 13

Notes

Here, we illustrate a first weakness of gradient
descent.
With the same learning rate η bu by changing the
starting point w0 of the procedure, the algorithm
now ends up in a local minimum.

η = 0.5

w0

ℒ̃ℒ

w1

ℒℒ̃

w2

ℒ̃ℒ

w3

ℒℒ̃

w4

ℒ̃ℒ

w5

ℒℒ̃

w6

ℒ̃ℒ

w7

ℒℒ̃

w8

ℒ̃ℒ

w9

ℒℒ̃

w10

ℒ̃ℒ

w11

ℒℒ̃

François Fleuret Deep learning / 3.5. Gradient descent 8 / 13

Notes

When η, is too large the algorithm ends up oscil-
lating around a minimum.
The quadratic term should be such that it “fits”
in the narrow valley where we want to converge,
which translates in having an η small enough not
to bounce around.

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

François Fleuret Deep learning / 3.5. Gradient descent 9 / 13

Notes

We can illustrate the gradient descent with a
more complex example. The loss is now a func-
tion from R2 to R. It has two local minima.
The top left picture is a 3D visualization of the
loss ℒ . The x and y axes in the plan are the
parameter space: w ∈ R2.
The top right picture is a top view of the loss
with level lines.
The bottom left picture is a vector map of the
gradient of the loss: at every point in the space,
the gradient is the partial derivative of ℒ with
respect of x , then y , and is represented with a
vector: [

∂ℒ

∂x
,
∂ℒ

∂y

]
The length of each arrow is proportional to the
norm of the gradient:

• in flat areas of the surface, gradients are

small, and depicted arrows are short;

• in steep areas of the surface (sides of the
paraboloids), the gradients are larger, and
the arrows longer.

The bottom right image shows for different start-
ing points the fifty successive values taken by the
gradient descent algorithm:

• the starting points are depicted with a
black circle,

• each red circle is the value taken by a wt .

This example shows several weaknesses:

• when the gradient is small (top left, and
bottom right), the algorithm moves slowly,

• in the top right part, the algorithm
converges to the local minimum.

We saw that the minimum of the logistic regression loss

ℒ (w , b) = −
∑
n

log σ(yn(w · xn + b))

does not have an analytic form.

François Fleuret Deep learning / 3.5. Gradient descent 10 / 13

We can derive

∂ℒ

∂b
= −

∑
n

yn σ(−yn(w · xn + b))︸ ︷︷ ︸
un

,

∀d ,
∂ℒ

∂wd
= −

∑
n

xn,d yn σ(−yn(w · xn + b))︸ ︷︷ ︸
vn,d

,

which can be implemented as

def gradient(x, y, w, b):
u = y * (- y * (x @ w + b)).sigmoid()
v = x * u.view(-1, 1) # Broadcasting
return - v.sum(0), - u.sum(0)

and the gradient descent as

w, b = torch.randn(x.size(1)), 0
eta = 1e-1

for k in range(nb_iterations):
print(k, loss(x, y, w, b))
dw, db = gradient(x, y, w, b)
w -= eta * dw
b -= eta * db

François Fleuret Deep learning / 3.5. Gradient descent 11 / 13

Notes

To compute the partial derivative of the loss w.r.t.
the parameters, we have the following result:

(log σ)′(x) =

(
log

(
1

1 + e−x

))′

= − −e−x

1 + e−x

=
1

ex + 1
= σ(−x)

With 𝓁n = log σ(yn(w · xn + b)),

∂𝓁n
∂b

= yn σ(−yn(w · xn + b))

and ∀d

∂𝓁n
∂wd

= xn,d yn σ(−yn(w · xn + b)).

And finally, by using the linearity of the derivation

operator,

∂ℒ

∂b
= −

∑
n

∂𝓁n
∂b

= −
∑
n

yn σ(−yn(w · xn + b))

and

∂ℒ

∂wd

= −
∑
n

∂𝓁n
∂wd

= −
∑
n

xn,d yn σ(−yn(w · xn + b))

In the implementation, the weight and bias are
initialized respectively with values drawn from a
normal distribution, and with 0.
v is computed by reusing the computation of u:
v = x * u.view(-1, 1). u is re-shaped as a
column vector which is then multiplied with each
column of the sample tensor. v.sum(0) sums all
the rows into one row and yields a tensor of size
(D,).

0 2000 4000 6000 8000 10000

Nb. of steps

10−1

100

101

102

L
os

s

François Fleuret Deep learning / 3.5. Gradient descent 12 / 13

Notes

The plot shows the loss we aim at minimizing
as a function of the number of iterations. The
learning rate η was 0.1.

With 100 training points and η = 10−1.

n = 0 n = 10 n = 102

n = 103 n = 104 LDA

François Fleuret Deep learning / 3.5. Gradient descent 13 / 13

Notes

The plot shows the decision boundary trained at
different stages of the learning process:

• The two populations are depicted in black
in each vignette and correspond to normal
distributions with different means and the
same covariance matrix. We ran the
optimization with 100 points drawn from
each class (not depicted).

• The red (resp. green) area is the set of
points which are classified as being from
class 0 (resp. 1) by the predictor.

At start, for n = 0, the weight vector is gen-
erated randomly and therefore performs poorly:
the decision boundary does not separate the two
populations.
As the training goes on, we see that the separation
starts to better discriminate the two populations,
which goes along the decrease of the loss.
As a comparison, the bottom-right image shows
the optimal result obtained with LDA (see lecture
3.2. “Probabilistic view of a linear classifier”).

