Deep learning

5.5. Parameter initialization

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE


https://fleuret.org/dlc/

Consider the gradient estimation for a standard MLP, as seen in 3.6.
“Back-propagation”:

Forward pass

. s() = W x(=1) 4 p()
xO =x vi=1,...,L,

X = o (s)

Backward pass

[386)} from the definition of 7 of 97
X ERCAR
i or i+ T [_or¢ os!!) ox()
if | < L,[ax(,)} = (W ) [85(’“)]
ot or N\ T {31/”]:{81/”].
Haw(’)ﬂ - {85(/)} <X( )) ob() os()

Francois Fleuret Deep learning / 5.5. Parameter initialization 1/20



We have

[%} _ <W(/+1)>T J,<S(/)) 6 {%}

so the gradient “vanishes” exponentially with the depth if the ws are
ill-conditioned or the activations are in the saturating domain of o.

100 ) ! \
' —Layer 1
Layer 2
—Layer 3
501 —Layer 4|
f Layer 5
0 i L mﬂf%ﬂ*}%"‘% i I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Frangois Fleuret

Deep learning / 5.5. Parameter initialization

(Glorot and Bengio, 2010)

2/20

Notes

In the process of back-propagation, the norm of
the gradient can explode or vanish for two rea-
sons:

e it gets multiplied again and again by the
weights w D If the weight matrix is
ill-conditioned, the gradient may vanish or
explode exponentially, and

e it gets multiplied by the derivative of the
non-linearity: in the flat regime of a tanh
for instance, the gradient of o is close to
zero

The plot taken from Glorot and Bengio (2010)
shows the distribution of the gradient in different

layers.

e In layer 5 (next to the output of the
network, cyan curve), the gradient is
spread out, and the distribution of the
norm of the gradient takes large values.

o The more we go back in the initial layers,
the norm of the gradient becomes smaller
and smaller: here, this is the vanishing
gradient effect.

What follows aims at carefully selecting w( at
initialization to avoid this effect and not to pay
an exponential price during the backward pass.



Weight initialization

Francois Fleuret Deep learning / 5.5. Parameter initialization 3/20



The design of the weight initialization aims at controlling

Vv

ow!! b
i,j i

so that weights evolve at the same rate across layers during training, and no
layer reaches a saturation behavior before others.

Frangois Fleuret Deep learning / 5.5. Parameter initialization 4/20



We will use that, if A and B are independent
V(AB) = V(A)V(B) + V(A E(B)? + V(B)E (A)?.

So in particular, if E(A) = E(B) =0, then V(AB) = V(A)V(B).

Notation in the coming slides will drop indexes when variances are identical for
all activations or parameters in a layer.

Francois Fleuret Deep learning / 5.5. Parameter initialization 5/20

Notes
By using the fact that V(X) = E (X?) — E (X)?,
V(AB) = E (AZBZ) — E(AB)’
—E (A2> E (32) — E(AB)
= (V() +EA)) (V(B) +E(B)’) — E(AY E(B)

= V(A) V(B) + V(A) E (B)® + V(B) E (A)®

In particular, when both A and B are centered, we have V(AB) = V(A) V(B)



In a standard layer
Ni—1

XI-(I) =0 Z wx=1 4 p0
j=1

iJ7J i

where N, is the number of units in layer /, and o is the activation function.

Assuming ¢/(0) = 1, and we are in the linear regime

N1
0 3w )
j=1

From which, if both the ws and x(/~Ys are centered, and biases set to zero:

N1
V(Xi(/)> ~V Z; Wi(,lj)Xj(/—l)
j=
PN
- SV ()
and the x()s are centered.

Frangois Fleuret Deep learning / 5.5. Parameter initialization

6 /20



) ! ey .
So if the WI-(J-) are sampled i.i.d in each layer, and all the activations have same

variance, then

=

V() = X V() V(5

:Amﬁv<ww)w(ﬂ“”).

So we have for the variance of the activations:

/
V(x) =V (xO) T Ng—1V(wl®),
(49) = v (:9) [T me-s¥ ()
which leads to a first type of initialization to ensure

v(wh) = /v,l_l'

Francois Fleuret Deep learning / 5.5. Parameter initialization 7/20



Francois Fleuret

We can look at the variance of the activations when going though a series of
linear layers of various size with a normal weight initialization.

s =[5, 50, 100, 25, 5 ]

x = torch.randn(1000, s[0])

for n in s[1:]:
w = torch.randn(x.size(1), n)
x =x Q0w
print(x.mean(), x.var())

prints

tensor (0.0045) tensor(5.0118)
tensor (0.0305) tensor(268.1688)
tensor (-0.3304) tensor(22855.8164)
tensor(2.4529) tensor(588037.5625)

Deep learning / 5.5. Parameter initialization

8 /20



And the same if we scale the weights in

s =1[5, 50, 100, 25, 5 ]

torch.randn (1000, s[0])

for n in s[1:]:
w = torch.randn(x.size(1), n) / math.sqrt(x.size(1))
x=x0Quw
print(x.mean(), x.var())

o]
I

prints

tensor (0.0113) tensor(1.0412)
tensor (3.4459e-05) tensor(1.0622)
tensor(0.0123) tensor(1.1627)
tensor (0.0095) tensor(1.2369)

Frangois Fleuret Deep learning / 5.5. Parameter initialization 9/20



The standard PyTorch weight initialization for a linear layer

f: RV - RM
is
%{ 1 1}
W~ S
Y VN' VN
hence
1

>>> f = nn.Linear(5, 100000)

>>> f.weight.mean()

tensor(0.0007, grad_fn=<MeanBackward0>)

>>> f.weight.var()

tensor(0.0667, grad_fn=<VarBackward0>)

>>> torch.empty(1000000) .uniform_(-1/math.sqrt(5), 1/math.sqrt(5)).var()
tensor (0.0667)

>>> 1./15.

0.06666666666666667

Francois Fleuret Deep learning / 5.5. Parameter initialization 10 / 20

Notes

This first type of initialization compensates the
increase of the variance due to the number of
input units by dividing the weights by the square
root of the number.



We can look at the variance of the gradient w.r.t. the activations. Since

N
ot N f:l ot (1+1)

we get

So we have for the variance of the gradient w.r.t. the activations:

L
or ot
) ~ S (q)
V(aXU))—V(aX(L)) 1/11"""\/(”’ )
q:

Francois Fleuret Deep learning / 5.5. Parameter initialization 11 /20

Notes

The analysis is the same as for the forward pass,
but now what matters is the number of units in
the next layer.



Since

we have

and we get the variance of the gradient w.r.t. the weights

V(%) :V(%) v(x(=)
(gt I () | 9(:0) (v (o)

of
:—NO HNqV )\\/ (ax(t))

Does not depend on /

Francois Fleuret Deep learning / 5.5. Parameter initialization 12 /20

Notes

Since

e the [variance of the] activations in layer / is
proportional to the product of the [variance
of the] weights of the layers before,

e the [variance of the] gradient is
proportional to the product of the [variance
of the] weights in the layers after, and

e the [variance of the] derivative of the loss
w.r.t. the weights is the product of the
two,

we have this interesting result that the [variance
of the] derivative of the loss w.r.t. the weights
at layer | does not depend exponentially on the
layer (it only depend on N, alone).



Similarly, since

=N
XV Y wiix b
=1
we have
or _ of
ap)  ax(D’

so we get the variance of the gradient w.r.t. the biases

ot ot
V(m) W(m)'

Frangois Fleuret Deep learning / 5.5. Parameter initialization

13/ 20



Finally:

1. there is no exponential behavior to mitigate for the gradients w.r.t. weights,

2. to control the variance of activations (e.g. avoid the saturating part of the
non-linearities), we need
v(w®) = 2

- )
N1

3. to control the variance of the gradient w.r.t. activations, and through it the
variance of the gradient w.r.t. the biases, we need

v (w) = %/

The “Xavier initialization” is a compromise

V(W) = L2
NieatNe Ny + Ny
2
(Glorot and Bengio, 2010)
Frangois Fleuret Deep learning / 5.5. Parameter initialization 14 / 20

Notes

To summarize, the constrains to initialize the
weights are the following:

e In the forward pass, the number of input
dimensions matters to control the variance
of the activations,

e In the backward pass, the number of
output dimensions matters to control the
variance of the gradient w.r.t. the biases.

Since we cannot have both together, we average
the two.



In torch/nn/init.py

def xavier_normal_(tensor, gain = 1):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
with torch.no_grad():
return tensor.normal_(0, std)

Francois Fleuret Deep learning / 5.5. Parameter initialization

15 /20



100 — T
—Layer 1
Layer2
—Layer 3

501 —Layer 4|
i Layer 5

0 \
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients

10 I T T P
gl
\ uimﬁ Mh“nd | : : —Layer 3
3 ] vu‘]ﬁ ' m‘.!'ﬁ : E —Layer 4| |
”L (] ﬂ\‘*ﬁn : Layer 5
Lk h‘"’“\'«’-
j s “'f ? F“\r i i i ] \f‘\' ’l'!?'ei-!‘l‘i-““CWLa.cu .

-025 -02 -015 -01 -0.05 0 005 01 015 02 025
Backpropagated gradients

(Glorot and Bengio, 2010)

Francois Fleuret Deep learning / 5.5. Parameter initialization 16 / 20

Notes

The second graph shows that with a proper ini-
tialization, the distribution of the norm of the
gradient is very similar across layers.



The weights can also be scaled to account for the activation functions. E.g. RelLU
impacts the forward and backward pass as if the weights had half their variances, which
motivates multiplying them by /2 (He et al., 2015).

The same type of reasoning can be applied to other activation functions.

In torch/nn/init.py

def calculate_gain(nonlinearity, param=None):

linear_fns = ['linear', 'convild', 'conv2d', 'conv3d',
'conv_transposeld', 'conv_transpose2d', 'conv_transpose3d']

if nonlinearity in linear_fns or nonlinearity == 'sigmoid':

return 1
elif nonlinearity == 'tanh':

return 5.0 / 3
elif nonlinearity == 'relu':

return math.sqrt(2.0)
/...

Francois Fleuret Deep learning / 5.5. Parameter initialization 17 / 20



Data normalization

Francois Fleuret Deep learning / 5.5. Parameter initialization 18 / 20



Frangois Fleuret

The analysis for the weight initialization relies on keeping the activation variance
constant.

For this to be true, not only the variance has to remained unchanged through layers,
but it has to be correct for the input too.

V(X(O)) =1.

This can be done in several ways. Under the assumption that all the input components
share the same statistics, we can do

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu) .div_(std)
test_input.sub_(mu).div_(std)

Thanks to the magic of broadcasting we can normalize component-wise with

mu, std = train_input.mean(0), train_input.std(0)
train_input.sub_(mu) .div_(std)
test_input.sub_(mu).div_(std)

Deep learning / 5.5. Parameter initialization 19 / 20



To go one step further, some techniques initialize the weights explicitly so that the
empirical moments of the activations are as desired.

As such, they take into account the statistics of the network activation induced by the
statistics of the data.

Francois Fleuret Deep learning / 5.5. Parameter initialization 20 / 20



References

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. CoRR, abs/1502.01852, 2015.



	Weight initialization
	Data normalization
	References

