
Deep learning

5.5. Parameter initialization

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Consider the gradient estimation for a standard MLP, as seen in 3.6.
“Back-propagation”:

Forward pass

x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)

Backward pass
[

∂𝓁
∂x(L)

]
from the definition of 𝓁

if l < L,
[

∂𝓁
∂x(l)

]
=
(
w (l+1)

)⊤ [∂𝓁
∂s(l+1)

]
[

∂𝓁

∂s(l)

]
=

[
∂𝓁

∂x(l)

]
⊙ σ′

(
s(l)
)

[[
∂𝓁

∂w (l)

]]
=

[
∂𝓁

∂s(l)

](
x(l−1)

)⊤ [
∂𝓁

∂b(l)

]
=

[
∂𝓁

∂s(l)

]
.

François Fleuret Deep learning / 5.5. Parameter initialization 1 / 20

We have [
∂𝓁

∂x(l)

]
=
(
w (l+1)

)⊤(
σ′
(
s(l)
)
⊙
[

∂𝓁

∂x(l+1)

])
.

so the gradient “vanishes” exponentially with the depth if the ws are
ill-conditioned or the activations are in the saturating domain of σ.

 254

Understanding the difficulty of training deep feedforward neural networks

4.2.2 Gradient Propagation Study

To empirically validate the above theoretical ideas, we have
plotted some normalized histograms of activation values,
weight gradients and of the back-propagated gradients at
initialization with the two different initialization methods.
The results displayed (Figures 6, 7 and 8) are from exper-
iments on Shapeset-3 × 2, but qualitatively similar results
were obtained with the other datasets.

We monitor the singular values of the Jacobian matrix as-
sociated with layer i:

J i =
∂zi+1

∂zi
(17)

When consecutive layers have the same dimension, the av-
erage singular value corresponds to the average ratio of in-
finitesimal volumes mapped from zi to zi+1, as well as
to the ratio of average activation variance going from zi

to zi+1. With our normalized initialization, this ratio is
around 0.8 whereas with the standard initialization, it drops
down to 0.5.

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

4.3 Back-propagated Gradients During Learning

The dynamic of learning in such networks is complex and
we would like to develop better tools to analyze and track
it. In particular, we cannot use simple variance calculations
in our theoretical analysis because the weights values are
not anymore independent of the activation values and the
linearity hypothesis is also violated.

As first noted by Bradley (2009), we observe (Figure 7) that
at the beginning of training, after the standard initializa-
tion (eq. 1), the variance of the back-propagated gradients
gets smaller as it is propagated downwards. However we
find that this trend is reversed very quickly during learning.
Using our normalized initialization we do not see such de-
creasing back-propagated gradients (bottom of Figure 7).

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

What was initially really surprising is that even when the
back-propagated gradients become smaller (standard ini-
tialization), the variance of the weights gradients is roughly
constant across layers, as shown on Figure 8. However, this
is explained by our theoretical analysis above (eq. 14). In-
terestingly, as shown in Figure 9, these observations on the
weight gradient of standard and normalized initialization
change during training (here for a tanh network). Indeed,
whereas the gradients have initially roughly the same mag-
nitude, they diverge from each other (with larger gradients
in the lower layers) as training progresses, especially with
the standard initialization. Note that this might be one of
the advantages of the normalized initialization, since hav-
ing gradients of very different magnitudes at different lay-
ers may yield to ill-conditioning and slower training.

Finally, we observe that the softsign networks share simi-
larities with the tanh networks with normalized initializa-
tion, as can be seen by comparing the evolution of activa-
tions in both cases (resp. Figure 3-bottom and Figure 10).

5 Error Curves and Conclusions

The final consideration that we care for is the success
of training with different strategies, and this is best il-
lustrated with error curves showing the evolution of test
error as training progresses and asymptotes. Figure 11
shows such curves with online training on Shapeset-3× 2,
while Table 1 gives final test error for all the datasets
studied (Shapeset-3 × 2, MNIST, CIFAR-10, and Small-
ImageNet). As a baseline, we optimized RBF SVM mod-
els on one hundred thousand Shapeset examples and ob-
tained 59.47% test error, while on the same set we obtained
50.47% with a depth five hyperbolic tangent network with
normalized initialization.

These results illustrate the effect of the choice of activa-
tion and initialization. As a reference we include in Fig-

(Glorot and Bengio, 2010)

François Fleuret Deep learning / 5.5. Parameter initialization 2 / 20

Notes

In the process of back-propagation, the norm of
the gradient can explode or vanish for two rea-
sons:

• it gets multiplied again and again by the

weights w (l+1). If the weight matrix is
ill-conditioned, the gradient may vanish or
explode exponentially, and

• it gets multiplied by the derivative of the
non-linearity: in the flat regime of a tanh
for instance, the gradient of σ is close to
zero

The plot taken from Glorot and Bengio (2010)
shows the distribution of the gradient in different

layers.

• In layer 5 (next to the output of the
network, cyan curve), the gradient is
spread out, and the distribution of the
norm of the gradient takes large values.

• The more we go back in the initial layers,
the norm of the gradient becomes smaller
and smaller: here, this is the vanishing
gradient effect.

What follows aims at carefully selecting w (l) at
initialization to avoid this effect and not to pay
an exponential price during the backward pass.

Weight initialization

François Fleuret Deep learning / 5.5. Parameter initialization 3 / 20

The design of the weight initialization aims at controlling

V

 ∂𝓁

∂w
(l)
i,j

 and V

(
∂𝓁

∂b
(l)
i

)

so that weights evolve at the same rate across layers during training, and no
layer reaches a saturation behavior before others.

François Fleuret Deep learning / 5.5. Parameter initialization 4 / 20

We will use that, if A and B are independent

V(AB) = V(A)V(B) +V(A)E (B)2 +V(B)E (A)2 .

So in particular, if E(A) = E(B) = 0, then V(AB) = V(A)V(B).

Notation in the coming slides will drop indexes when variances are identical for
all activations or parameters in a layer.

François Fleuret Deep learning / 5.5. Parameter initialization 5 / 20

Notes

By using the fact that V(X) = E
(
X 2

)
− E (X)2,

V(AB) = E
(
A2B2

)
− E (AB)2

= E
(
A2

)
E
(
B2

)
− E (AB)2

=
(
V(A) + E (A)2

)(
V(B) + E (B)2

)
− E (A)2 E (B)2

= V(A)V(B) + V(A)E (B)2 + V(B)E (A)2

In particular, when both A and B are centered, we have V(AB) = V(A)V(B)

In a standard layer

x
(l)
i = σ

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

where Nl is the number of units in layer l , and σ is the activation function.

Assuming σ′(0) = 1, and we are in the linear regime

x
(l)
i ≃

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i .

From which, if both the w (l)s and x(l−1)s are centered, and biases set to zero:

V
(
x
(l)
i

)
≃ V

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j

=

Nl−1∑
j=1

V
(
w

(l)
i,j

)
V
(
x
(l−1)
j

)
and the x(l)s are centered.

François Fleuret Deep learning / 5.5. Parameter initialization 6 / 20

So if the w
(l)
i,j are sampled i.i.d in each layer, and all the activations have same

variance, then

V
(
x
(l)
i

)
≃

Nl−1∑
j=1

V
(
w

(l)
i,j

)
V
(
x
(l−1)
j

)
= Nl−1V

(
w (l)

)
V
(
x(l−1)

)
.

So we have for the variance of the activations:

V
(
x(l)
)
≃ V

(
x(0)
) l∏

q=1

Nq−1V
(
w (q)

)
,

which leads to a first type of initialization to ensure

V
(
w (l)

)
=

1

Nl−1
.

François Fleuret Deep learning / 5.5. Parameter initialization 7 / 20

We can look at the variance of the activations when going though a series of
linear layers of various size with a normal weight initialization.

s = [5, 50, 100, 25, 5]
x = torch.randn(1000, s[0])
for n in s[1:]:

w = torch.randn(x.size(1), n)
x = x @ w
print(x.mean(), x.var())

prints

tensor(0.0045) tensor(5.0118)
tensor(0.0305) tensor(268.1688)
tensor(-0.3304) tensor(22855.8164)
tensor(2.4529) tensor(588037.5625)

François Fleuret Deep learning / 5.5. Parameter initialization 8 / 20

And the same if we scale the weights in 1√
Nl−1

.

s = [5, 50, 100, 25, 5]
x = torch.randn(1000, s[0])
for n in s[1:]:

w = torch.randn(x.size(1), n) / math.sqrt(x.size(1))
x = x @ w
print(x.mean(), x.var())

prints

tensor(0.0113) tensor(1.0412)
tensor(3.4459e-05) tensor(1.0622)
tensor(0.0123) tensor(1.1627)
tensor(0.0095) tensor(1.2369)

François Fleuret Deep learning / 5.5. Parameter initialization 9 / 20

The standard PyTorch weight initialization for a linear layer

f : RN → RM

is

wi,j ∼ 𝒰
[
−

1
√
N
,

1
√
N

]
hence

V(w) =
1

3N
.

>>> f = nn.Linear(5, 100000)
>>> f.weight.mean()
tensor(0.0007, grad_fn=<MeanBackward0>)
>>> f.weight.var()
tensor(0.0667, grad_fn=<VarBackward0>)
>>> torch.empty(1000000).uniform_(-1/math.sqrt(5), 1/math.sqrt(5)).var()
tensor(0.0667)
>>> 1./15.
0.06666666666666667

François Fleuret Deep learning / 5.5. Parameter initialization 10 / 20

Notes

This first type of initialization compensates the
increase of the variance due to the number of
input units by dividing the weights by the square
root of the number.

We can look at the variance of the gradient w.r.t. the activations. Since

∂𝓁

∂x
(l)
i

≃
Nl+1∑
h=1

∂𝓁

∂x
(l+1)
h

w
(l+1)
h,i

we get

V

(
∂𝓁

∂x(l)

)
≃ Nl+1V

(
∂𝓁

∂x(l+1)

)
V
(
w (l+1)

)
.

So we have for the variance of the gradient w.r.t. the activations:

V

(
∂𝓁

∂x(l)

)
≃ V

(
∂𝓁

∂x(L)

) L∏
q=l+1

NqV
(
w (q)

)
.

François Fleuret Deep learning / 5.5. Parameter initialization 11 / 20

Notes

The analysis is the same as for the forward pass,
but now what matters is the number of units in
the next layer.

Since

x
(l)
i ≃

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

we have

∂𝓁

∂w
(l)
i,j

≃
∂𝓁

∂x
(l)
i

x
(l−1)
j ,

and we get the variance of the gradient w.r.t. the weights

V

(
∂𝓁

∂w (l)

)
≃ V

(
∂𝓁

∂x(l)

)
V
(
x(l−1)

)
= V

(
∂𝓁

∂x(L)

) L∏
q=l+1

NqV
(
w (q)

)V(x(0))
 l∏

q=1

Nq−1V
(
w (q)

)
=

1

Nl
N0

 L∏
q=1

NqV
(
w (q)

)V(x(0))V(∂𝓁

∂x(L)

)
︸ ︷︷ ︸

Does not depend on l

.

François Fleuret Deep learning / 5.5. Parameter initialization 12 / 20

Notes

Since

• the [variance of the] activations in layer l is
proportional to the product of the [variance
of the] weights of the layers before,

• the [variance of the] gradient is
proportional to the product of the [variance
of the] weights in the layers after, and

• the [variance of the] derivative of the loss
w.r.t. the weights is the product of the
two,

we have this interesting result that the [variance
of the] derivative of the loss w.r.t. the weights
at layer l does not depend exponentially on the
layer (it only depend on Nl alone).

Similarly, since

x
(l)
i ≃

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

we have

∂𝓁

∂b
(l)
i

≃
∂𝓁

∂x
(l)
i

,

so we get the variance of the gradient w.r.t. the biases

V

(
∂𝓁

∂b(l)

)
≃ V

(
∂𝓁

∂x(l)

)
.

François Fleuret Deep learning / 5.5. Parameter initialization 13 / 20

Finally:

1. there is no exponential behavior to mitigate for the gradients w.r.t. weights,

2. to control the variance of activations (e.g. avoid the saturating part of the
non-linearities), we need

V
(
w (l)

)
=

1

Nl−1
,

3. to control the variance of the gradient w.r.t. activations, and through it the
variance of the gradient w.r.t. the biases, we need

V
(
w (l)

)
=

1

Nl
.

The “Xavier initialization” is a compromise

V
(
w (l)

)
=

1
Nl−1+Nl

2

=
2

Nl−1 + Nl
.

(Glorot and Bengio, 2010)

François Fleuret Deep learning / 5.5. Parameter initialization 14 / 20

Notes

To summarize, the constrains to initialize the
weights are the following:

• In the forward pass, the number of input
dimensions matters to control the variance
of the activations,

• In the backward pass, the number of
output dimensions matters to control the
variance of the gradient w.r.t. the biases.

Since we cannot have both together, we average
the two.

In torch/nn/init.py

def xavier_normal_(tensor, gain = 1):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
with torch.no_grad():

return tensor.normal_(0, std)

François Fleuret Deep learning / 5.5. Parameter initialization 15 / 20

 254

Understanding the difficulty of training deep feedforward neural networks

4.2.2 Gradient Propagation Study

To empirically validate the above theoretical ideas, we have
plotted some normalized histograms of activation values,
weight gradients and of the back-propagated gradients at
initialization with the two different initialization methods.
The results displayed (Figures 6, 7 and 8) are from exper-
iments on Shapeset-3 × 2, but qualitatively similar results
were obtained with the other datasets.

We monitor the singular values of the Jacobian matrix as-
sociated with layer i:

J i =
∂zi+1

∂zi
(17)

When consecutive layers have the same dimension, the av-
erage singular value corresponds to the average ratio of in-
finitesimal volumes mapped from zi to zi+1, as well as
to the ratio of average activation variance going from zi

to zi+1. With our normalized initialization, this ratio is
around 0.8 whereas with the standard initialization, it drops
down to 0.5.

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

4.3 Back-propagated Gradients During Learning

The dynamic of learning in such networks is complex and
we would like to develop better tools to analyze and track
it. In particular, we cannot use simple variance calculations
in our theoretical analysis because the weights values are
not anymore independent of the activation values and the
linearity hypothesis is also violated.

As first noted by Bradley (2009), we observe (Figure 7) that
at the beginning of training, after the standard initializa-
tion (eq. 1), the variance of the back-propagated gradients
gets smaller as it is propagated downwards. However we
find that this trend is reversed very quickly during learning.
Using our normalized initialization we do not see such de-
creasing back-propagated gradients (bottom of Figure 7).

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

What was initially really surprising is that even when the
back-propagated gradients become smaller (standard ini-
tialization), the variance of the weights gradients is roughly
constant across layers, as shown on Figure 8. However, this
is explained by our theoretical analysis above (eq. 14). In-
terestingly, as shown in Figure 9, these observations on the
weight gradient of standard and normalized initialization
change during training (here for a tanh network). Indeed,
whereas the gradients have initially roughly the same mag-
nitude, they diverge from each other (with larger gradients
in the lower layers) as training progresses, especially with
the standard initialization. Note that this might be one of
the advantages of the normalized initialization, since hav-
ing gradients of very different magnitudes at different lay-
ers may yield to ill-conditioning and slower training.

Finally, we observe that the softsign networks share simi-
larities with the tanh networks with normalized initializa-
tion, as can be seen by comparing the evolution of activa-
tions in both cases (resp. Figure 3-bottom and Figure 10).

5 Error Curves and Conclusions

The final consideration that we care for is the success
of training with different strategies, and this is best il-
lustrated with error curves showing the evolution of test
error as training progresses and asymptotes. Figure 11
shows such curves with online training on Shapeset-3× 2,
while Table 1 gives final test error for all the datasets
studied (Shapeset-3 × 2, MNIST, CIFAR-10, and Small-
ImageNet). As a baseline, we optimized RBF SVM mod-
els on one hundred thousand Shapeset examples and ob-
tained 59.47% test error, while on the same set we obtained
50.47% with a depth five hyperbolic tangent network with
normalized initialization.

These results illustrate the effect of the choice of activa-
tion and initialization. As a reference we include in Fig-

(Glorot and Bengio, 2010)

François Fleuret Deep learning / 5.5. Parameter initialization 16 / 20

Notes

The second graph shows that with a proper ini-
tialization, the distribution of the norm of the
gradient is very similar across layers.

The weights can also be scaled to account for the activation functions. E.g. ReLU
impacts the forward and backward pass as if the weights had half their variances, which
motivates multiplying them by

√
2 (He et al., 2015).

The same type of reasoning can be applied to other activation functions.

In torch/nn/init.py

def calculate_gain(nonlinearity, param=None):

linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d',
'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']

if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
return 1

elif nonlinearity == 'tanh':
return 5.0 / 3

elif nonlinearity == 'relu':
return math.sqrt(2.0)

/.../

François Fleuret Deep learning / 5.5. Parameter initialization 17 / 20

Data normalization

François Fleuret Deep learning / 5.5. Parameter initialization 18 / 20

The analysis for the weight initialization relies on keeping the activation variance
constant.

For this to be true, not only the variance has to remained unchanged through layers,
but it has to be correct for the input too.

V
(
x(0)
)
= 1.

This can be done in several ways. Under the assumption that all the input components
share the same statistics, we can do

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)
test_input.sub_(mu).div_(std)

Thanks to the magic of broadcasting we can normalize component-wise with

mu, std = train_input.mean(0), train_input.std(0)
train_input.sub_(mu).div_(std)
test_input.sub_(mu).div_(std)

François Fleuret Deep learning / 5.5. Parameter initialization 19 / 20

To go one step further, some techniques initialize the weights explicitly so that the
empirical moments of the activations are as desired.

As such, they take into account the statistics of the network activation induced by the
statistics of the data.

François Fleuret Deep learning / 5.5. Parameter initialization 20 / 20

References

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. CoRR, abs/1502.01852, 2015.

	Weight initialization
	Data normalization
	References

