
Deep learning

6.3. Dropout

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

A first “deep” regularization technique is dropout (Srivastava et al., 2014). It
consists of removing units at random during the forward pass on each sample,
and putting them all back during test.Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are different from each other and in order to make
neural net models different, they should either have different architectures or be trained
on different data. Training many different architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train different networks on
different subsets of the data. Even if one was able to train many different large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many different neural network
architectures efficiently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

(Srivastava et al., 2014)

François Fleuret Deep learning / 6.3. Dropout 1 / 11

Notes

A key idea in deep learning is to engineer archi-
tectures to make them easier to train.
So far, we saw that we can choose the architec-
ture (number of layers, units, filters, filter sizes,
etc.), the activation function(s), and the param-
eter initialization.
We can go one step further by adding mecha-
nisms specifically designed to facilitate the train-
ing, such as “dropout”. As pictured on the right
it removes at random some of the units during the
forward pass. The units to remove are selected
at random independently for every sample. The
backward pass is done consistently, i.e. through
the kept units alone.

This method increases independence between units, and distributes the representation.
It generally improves performance.

“In a standard neural network, the derivative received by each parameter
tells it how it should change so the final loss function is reduced, given
what all other units are doing. Therefore, units may change in a way that
they fix up the mistakes of the other units. This may lead to complex co-
adaptations. This in turn leads to overfitting because these co-adaptations
do not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden
units unreliable. Therefore, a hidden unit cannot rely on other specific units
to correct its mistakes. It must perform well in a wide variety of different
contexts provided by the other hidden units.”

(Srivastava et al., 2014)

François Fleuret Deep learning / 6.3. Dropout 2 / 11

Dropout

Method Test Classification error %

L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout + Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

also see how the advantages obtained from dropout vary with the probability of retaining
units, size of the network and the size of the training set. These observations give some
insight into why dropout works so well.

7.1 Effect on Features

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

In a standard neural network, the derivative received by each parameter tells it how it
should change so the final loss function is reduced, given what all other units are doing.
Therefore, units may change in a way that they fix up the mistakes of the other units.
This may lead to complex co-adaptations. This in turn leads to overfitting because these
co-adaptations do not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden units unreliable.
Therefore, a hidden unit cannot rely on other specific units to correct its mistakes. It must
perform well in a wide variety of different contexts provided by the other hidden units. To
observe this effect directly, we look at the first level features learned by neural networks
trained on visual tasks with and without dropout.

1943

(Srivastava et al., 2014)

A network with dropout can be interpreted as an ensemble of 2N models with heavy
weight sharing (Goodfellow et al., 2013).

François Fleuret Deep learning / 6.3. Dropout 3 / 11

One has to decide on which units/layers to use dropout, and with what probability p
units are dropped.

During training, for each sample, as many Bernoulli variables as units are sampled
independently to select units to remove.

Let X be a unit activation, and D be an independent Boolean random variable of
probability 1− p. We have

E(D X) = E(D)E(X) = (1− p)E(X)

To keep the means of the inputs to layers unchanged, the initial version of dropout was
multiplying activations by 1− p during test.

The standard variant in use is the “inverted dropout”. It multiplies activations by 1
1−p

during train and keeps the network untouched during test.

François Fleuret Deep learning / 6.3. Dropout 4 / 11

Dropout is not implemented by actually switching off units, but equivalently as a
module that drops activations at random on each sample.

. . . Φ Φ . . .

x(l)

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

u
(l)
1

u
(l)
2

u
(l)
3

u
(l)
4

x(l) dropout u(l)dropout

François Fleuret Deep learning / 6.3. Dropout 5 / 11

Dropout is implemented in PyTorch as nn.Dropout, which is a torch.Module.

In the forward pass, it samples a Boolean variable for each component of the tensor it
gets as input, and zeroes entries accordingly.

Default probability to drop is p = 0.5, but other values can be specified.

François Fleuret Deep learning / 6.3. Dropout 6 / 11

>>> x = torch.full((3, 5), 1.0).requires_grad_()
>>> x
tensor([[1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])

>>> dropout = nn.Dropout(p = 0.75)
>>> y = dropout(x)
>>> y
tensor([[0., 0., 4., 0., 4.],

[0., 4., 4., 4., 0.],
[0., 0., 4., 0., 0.]])

>>> l = y.norm(2, 1).sum()
>>> l.backward()
>>> x.grad
tensor([[0.0000, 0.0000, 2.8284, 0.0000, 2.8284],

[0.0000, 2.3094, 2.3094, 2.3094, 0.0000],
[0.0000, 0.0000, 4.0000, 0.0000, 0.0000]])

François Fleuret Deep learning / 6.3. Dropout 7 / 11

If we have a network

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
nn.Linear(100, 50), nn.ReLU(),
nn.Linear(50, 2));

we can simply add dropout layers

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
nn.Dropout(),
nn.Linear(100, 50), nn.ReLU(),
nn.Dropout(),
nn.Linear(50, 2));

François Fleuret Deep learning / 6.3. Dropout 8 / 11

! A model using dropout has to be set in “train” or “test” mode.

The method nn.Module.train(mode) recursively sets the flag training to all
sub-modules.

>>> dropout = nn.Dropout()
>>> model = nn.Sequential(nn.Linear(3, 10), dropout, nn.Linear(10, 3))
>>> dropout.training
True
>>> model.train(False)
Sequential (

(0): Linear (3 -> 10)
(1): Dropout (p = 0.5)
(2): Linear (10 -> 3)

)
>>> dropout.training
False

François Fleuret Deep learning / 6.3. Dropout 9 / 11

Notes

A network containing a dropout layer behaves
differently in train and in test.
In some specific situation, dropout can be used
in test as a way to randomize the output, for
instance to estimate prediction confidence.

As pointed out by Tompson et al. (2015), units in a 2d activation map are generally
locally correlated, and dropout has virtually no effect. They proposed SpatialDropout,
which drops channels instead of individual units.

>>> dropout2d = nn.Dropout2d()
>>> x = torch.full((2, 3, 2, 4), 1.)
>>> dropout2d(x)
tensor([[[[2., 2., 2., 2.],

[2., 2., 2., 2.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[2., 2., 2., 2.],
[2., 2., 2., 2.]]],

[[[2., 2., 2., 2.],
[2., 2., 2., 2.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]]]])

François Fleuret Deep learning / 6.3. Dropout 10 / 11

Another variant is dropconnect, which drops connections instead of units.

Regularization of Neural Networks using DropConnect

DropConnect
weights

W (d x n)

b) DropConnect
mask M

 Features
v (n x 1)

u (d x 1)

a) Model Layout

Activation
 function

a(u)

Outputs
 r (d x 1)

Feature
extractor
g(x;Wg)

 Input
 x

Softmax
 layer

s(r;Ws)

Predictions
 o (k x 1)

c) Effective Dropout
mask M’

Previous layer mask

C
ur

re
nt

 la
ye

r o
ut

pu
t m

as
k

Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input x, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W . The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax layer s. For comparison, (c)
shows an effective weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)
and this layer’s output (green rows). Note the lack of structure in (b) compared to (c).

nected layer, we can write Eqn. 1 as:

r = m ? a(Wv) (2)

where ? denotes element wise product and m is a bi-
nary mask vector of size d with each element, j, drawn
independently from mj ∼ Bernoulli(p).
Many commonly used activation functions such as
tanh, centered sigmoid and relu (Nair and Hinton,
2010), have the property that a(0) = 0. Thus, Eqn. 2
could be re-written as, r = a(m?Wv), where Dropout
is applied at the inputs to the activation function.

2.2. DropConnect

DropConnect is the generalization of Dropout in which
each connection, rather than each output unit, can
be dropped with probability 1 − p. DropConnect is
similar to Dropout as it introduces dynamic sparsity
within the model, but differs in that the sparsity is
on the weights W , rather than the output vectors of a
layer. In other words, the fully connected layer with
DropConnect becomes a sparsely connected layer in
which the connections are chosen at random during
the training stage. Note that this is not equivalent to
setting W to be a fixed sparse matrix during training.

For a DropConnect layer, the output is given as:

r = a ((M ?W) v) (3)

where M is a binary matrix encoding the connection
information and Mij ∼ Bernoulli(p). Each element
of the mask M is drawn independently for each exam-
ple during training, essentially instantiating a differ-
ent connectivity for each example seen. Additionally,

the biases are also masked out during training. From
Eqn. 2 and Eqn. 3, it is evident that DropConnect is
the generalization of Dropout to the full connection
structure of a layer1.

The paper structure is as follows: we outline details on
training and running inference in a model using Drop-
Connect in section 3, followed by theoretical justifica-
tion for DropConnect in section 4, GPU implementa-
tion specifics in section 5, and experimental results in
section 6.

3. Model Description

We consider a standard model architecture composed
of four basic components (see Fig. 1a):

1. Feature Extractor: v = g(x;Wg) where v are the out-
put features, x is input data to the overall model,
and Wg are parameters for the feature extractor. We
choose g() to be a multi-layered convolutional neural
network (CNN) (LeCun et al., 1998), with Wg being
the convolutional filters (and biases) of the CNN.

2. DropConnect Layer: r = a(u) = a((M ? W)v) where
v is the output of the feature extractor, W is a fully
connected weight matrix, a is a non-linear activation
function and M is the binary mask matrix.

3. Softmax Classification Layer: o = s(r;Ws) takes as
input r and uses parameters Ws to map this to a k
dimensional output (k being the number of classes).

4. Cross Entropy Loss: A(y, o) = −∑k
i=1 yilog(oi) takes

probabilities o and the ground truth labels y as input.

1This holds when a(0) = 0, as is the case for tanh and
relu functions.

(Wan et al., 2013)

It cannot be implemented as a separate layer and is computationally intensive.

François Fleuret Deep learning / 6.3. Dropout 11 / 11

Notes

Dropconnect is computationally and memory ex-
pensive because each sample has its own weight
matrix. It requires to engineer the layer them-
selves, and cannot be implemented as easily as a
dropout module.

References

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In
International Conference on Machine Learning (ICML), 2013.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research
(JMLR), 15:1929–1958, 2014.

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object localization using
convolutional networks. In Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural network using
dropconnect. In International Conference on Machine Learning (ICML), 2013.

	References

