Deep learning

6.5. Residual networks

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

The “Highway networks” by Srivastava et al. (2015) use the idea of gating
developed for recurrent units. It replaces a standard non-linear layer

y = H(x; Wy)
with a layer that includes a “gated” pass-through
y = T(x; Wr)H(x; Wy) + (1 — T(x; Wr))x

where T (x; Wt) € [0, 1] modulates how much the signal should be transformed.

X (1-T) 4|

[l r]
L L

Initializing T's parameters so that T ~ 0 at first, assures that gradients will
pass through, and allows to train networks with up to 100 layers.

Francois Fleuret Deep learning / 6.5. Residual networks 1/21

The residual networks proposed by He et al. (2015) simplify the idea and use a
building block with a skip connection.
lJJ

Linear BN RelLU Linear BN | | ReLU |—— - - -

skip connection

Thanks to this structure, the parameters are optimized to learn a residual, that
is the difference between the value before the block and the one needed after.

Frangois Fleuret Deep learning / 6.5. Residual networks

2/21

We can implement such a network for MNIST, composed of:

e A first convolution layer convO with kernels 1 x 1 to convert the tensor
from 1 x 28 x 28 to nb_channels x28 x 28,

e a series of ResBlocks, each composed of two convolution layers and two
batch normalization layers, that maintains the tensor size unchanged,

e an average poling layer avg that produces an output of size
nb_channels X1 X 1,

e a fully connected layer fc to make the final prediction.

Francois Fleuret Deep learning / 6.5. Residual networks 3/21

[]

| | convl [— bnl relu conv2 [— bn2 relu

[]
[+ =

class ResBlock(nn.Module):
def __init__(self, nb_channels, kernel_size):
super () .__init__Q)

self.convl = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)
self.bnl = nn.BatchNorm2d(nb_channels)

self.conv2 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)
self.bn2 = nn.BatchNorm2d(nb_channels)

def forward(self, x):
y = self.bnl(self.convl(x))
y = F.relu(y)
y = self.bn2(self.conv2(y))
yt=x
y = F.relu(y)
return y

Frangois Fleuret Deep learning / 6.5. Residual networks 4/21

Notes

We expect the kernel size k to be odd. To obtain
activation maps of the same size as the input, we
must add a padding of %
More generally, we solve
n+2p—k+1 k—1
n=—7—M9— " &p= ——
s 2

where n is the input dimension, s the stride (equal
to 1 here), p the padding, and k the kernel size
(see lecture 4.4. “Convolutions”).

class ResNet (nn.Module):
def __init__(self, nb_channels, kernel_size, nb_blocks):
super() .__init__Q)

self.conv0 = nn.Conv2d (1, nb_channels, kernel_size = 1)

self.resblocks = nn.Sequential(
A bit of fancy Python

* (ResBlock(nb_channels, kernel_size) for _ in range(nb_blocks))

)

self.avg = nn.AvgPool2d(kernel_size = 28)
self.fc = nn.Linear(nb_channels, 10)

def forward(self, x):

= F.relu(self.conv0(x))
self.resblocks(x)

= F.relu(self.avg(x))
x.view(x.size(0), -1)
self.fc(x)

return x

Ea T T B
|

Francois Fleuret Deep learning / 6.5. Residual networks 5/21

Notes

Note that the first convolution layer convO is
there so that the residual blocks get as input the
proper number of channels.
This network has therefore:

e one convolution layer,

e nb_blocks residual blocks,

® one average pooling,

e one linear layer for the final classification.

Before the average pooling, the size of the signal
is nb_channels x28 x 28, since MNIST images
are of size 28 x 28 and that the residual blocks
preserve the size.

Francois Fleuret

With 25 residual blocks, 16 channels, and convolution kernels of size 3 X 3, we get the

following structure, with 117,802 parameters.

ResNet (
(conv0) : Conv2d(1, 16, kernel_size=(1, 1), stride=(1, 1))
(resblocks): Sequential(
(0) : ResBlock(
(convl): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running stats=True)
(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2) : BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
/.o../
(24) : ResBlock(
(convl): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_ stats=True)
(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2) : BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(avg): AvgPool2d(kernel_size=28, stride=28, padding=0)
(fc): Linear(in_features=16, out_features=10, bias=True)

)

Deep learning / 6.5. Residual networks

6/ 21

A technical point for a more general use of a residual architecture is to deal with
convolution layers that change the activation map sizes or numbers of channels.

He et al. (2015) only consider:

e reducing the activation map size by a factor 2,

e increasing the number of channels.

Francois Fleuret Deep learning / 6.5. Residual networks 7/21

To reduce the activation map size by a factor 2, the identity pass-trough extracts 1/4 of
the activations over a regular grid (i.e. with a stride of 2),

N4

[=]
i

Frangois Fleuret Deep learning / 6.5. Residual networks 8 /21

To increase the number of channels from C to C’, they propose to either:

e pad the original value with C’ — C zeros, which amounts to adding as many zeroed
channels, or
e use C’ convolutions with a 1 x 1 x C filter, which corresponds to applying the
. / .
same fully-connected linear model R¢ — RC at every location.

Francois Fleuret Deep learning / 6.5. Residual networks 9/21

Finally, He et al.’s residual networks are fully convolutional, which means they have no
fully connected layers. We will come back to this.

Their one-before last layer is a per-channel global average pooling that outputs a 1d
tensor, fed into a single fully-connected layer.

Francois Fleuret Deep learning / 6.5. Residual networks 10 /21

image image image

e [Bcomer]
size: 220

seme]
output pooy 2
size: 112 3 conv, 128
[Cromz) ez] [rrcomenrz |
v v v
output pool, /2 Dnﬂ'\,/l pool, /2
el | [Cmeome] [
L2
[Rewz] [Cmeome] [
A2
[rowze] [Crome] [Crome]
2
ez | [ecome] [Crome]
L2
[Ceowe] [Coows
L2
[Crewe] [CGRowe]
2 e
tout pool, /2 [3acomv, 128,72 [3x3com, 128,72 |
o
L2
S8 o] [3eemim] [eomis
L2
[oowsz] [Crowz) [oewim]
L2 L2
[oowsz [Crowz] [oowizs
L2
[oemsz] [Crowz) [oemm]
L2
T o
o o
L2
o S
amtin ez]
[z | [3acmw26 | [38w | .
L2 2
[3Gomsn | [3aom2s6 | [3Gomw2s6 |
L2 L2
[CRewsz) [emz) [emz)
L2 2
[z | [3somv256 | [3somv256 |
A2
o oS
#%%%# Somm s
[oemme] [soeowsm |
e o
2
T T
?%%%# o
[semme] [soewsm]
ot w12 Cmewszn] [Goewsnn |

33 conv, 512 33 conv, 512

33 conv, 512 33 conv, 512

333 conv, 512

33 conv, 512 36 conv, 512

L
L
[CRonsn
L
[

313 conv, 512

T
v

ot

e dl . s e

|

7|

1000

(He et al., 2015)

Frangois Fleuret Deep learning / 6.5. Residual networks 11 /21

Notes

e The network on the left is a VGG19,

e The network in the middle is a 34-layer
network without skip connections,

o The network on the right is a 34-layer
residual network.

Performance on ImageNet.

60

134
o]

error (%)

— ResNet-34 34-layer
30 40 50 9 10 20 30 40 50
iter. (1e4) iter. (1e4)
Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

(He et al., 2015)

Francois Fleuret Deep learning / 6.5. Residual networks 12 /21

Notes

Residual networks were a breakthrough that re-
duced the (top-5) error rate on ImageNet down
to 3.57 at the time when state-of-the-art was at
4.82.

The plots show the training and test errors on
ImageNet. The breaks in slope correspond to
moments where the learning is reduced.

He et al. (2016) proposed to sequence operations in a residual block so that the main

“pathway” has no non-linearity. This results in substantial improvements.

Linear —| BN

RelLU Linear —

BN

]

Original (He et al., 2015)

L

RelLU

BN |—| RelLU

Linear BN

RelLU

Linear

Identity residual (He et al., 2016)

Francois Fleuret

Deep learning / 6.5. Residual networks

13 /21

Veit et al. (2016) interpret a residual network as an ensemble, which explains in part its
stability.

E.g., with three blocks we have

x1 = xo + fi(x0)
xo = x1 + f(x1)
x3 = xp + f3(x2)

hence there are four “paths’:
x3 = x2 + 3(x2)
=x1 + h(x1) + 3(x1 + f2(x1))
= é).+.f1(xo).+.f2(xo + fl(XO)).+.f3(XO + fi(x0) + f2(x0 + fl(XO)))I-

Veit et al. show that (1) performance reduction correlates with the number of paths

removed from the ensemble, not with the number of blocks removed, (2) only gradients
through shallow paths matter during train.

Francois Fleuret Deep learning / 6.5. Residual networks 14 /21

Francois Fleuret

An extension of the residual network, is the stochastic depth network.

“Stochastic depth aims to shrink the depth of a network during training,
while keeping it unchanged during testing. We can achieve this goal by
randomly dropping entire ResBlocks during training and bypassing their
transformations through skip connections.”

(Huang et al., 2016)

[e]

[

[e]

[

|
Py —
L L

X %(p1)

X B(p2)

rr

Deep learning / 6.5. Residual networks

|
caey o] o] — -

15 /21

Shattered Gradient

Francois Fleuret Deep learning / 6.5. Residual networks 16 / 21

Balduzzi et al. (2017) points out that depth “shatters” the relation between the input
and the gradient w.r.t. the input, and that Resnets mitigate this effect.

L | o {1

(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Gradients
Noise

(Balduzzi et al., 2017)

Since linear networks avoid this problem, they suggest to combine CReLU (see lecture
6.2. “Rectifiers”) with a Looks Linear initialization that makes the network linear
initially.

Francois Fleuret Deep learning / 6.5. Residual networks 17 /21

Notes

The three left graphs show the gradient of the
output with respect to the input, as a function
of the input, on a 1d synthetic example.

e with a shallow network, the relation
between the gradient and the input is quite
structured;

e with a deep network, the relation is
shattered. There is no dependency
between the change in the input and the
change in the gradient;

e with a resnet, there is actually a large scale
structure between gradient and input.

The two right graphs show the structure of a
brown noise and a white noise that exhibit similar
differences of structure.

Let o(x) = max(0, x), and
¢ :RP - R?P

the CReLU non-linearity, i.e.

1 ’D’{ ®(x)2g-1 = 0(xq),

Vx €]RD, =
9 ®(x)og = 0(—xq)

and a weight matrix W € RDP’X2D gych that
D' q=1,...,D, Wjpq 1 =—W,z4=

Vi=1,...

So two neighboring columns of ®(x) are the o(-) and o(—-) of a column of x, and two
neighboring columns of W are a column of W and its opposite.

Deep learning / 6.5. Residual networks 18 /21

Frangois Fleuret

Notes
W1’1 C. Wl,D
/
W = € RD XD
WD/,]. o e WD/,D
Wi 1 Wi Wi p —Wip
~ /
W = c RD X 2D
WD/,]. WD/71 oo WD/,D _WD/7D

From this we get, Vi=1,...,B, j=1,...,D’:

Hence B
Vx, Wd(x) = Wx

and doing this in every layer results in a linear network.

Francois Fleuret Deep learning / 6.5. Residual networks 19 /21

Notes

When the network is initialized in such a way
(“looks linear” initialization), at start, right be-
fore training, it behaves as a linear network.
This induces a strong relation between gradient
and the input, as it happens thanks to the pass-
through in residual networks.

I I
0.85 |- — i
0.75 |- .
> 065 3
g —— CReLU w/ LL
g 0551 Resnet .
< CReLU w/o LL
035 —— Linear |
025 | | | | |
6 14 30 54 102 198
Depth

Figure 6: CIFAR-10 test accuracy. Comparison of test ac-
curacy between networks of different depths with and with-

out LL initialization.

Frangois Fleuret Deep learning / 6.5. Residual networks

(Balduzzi et al., 2017)

20 / 21

Notes

e “Linear” stands for a simple linear network;

e “RelLU” stands for a Resnet with RelLU
activations and no skip-connection;

e “CReLU w/o LL" stands for a deep
network (no residual connection) with
CRelLU activations, initialized with the
standard Resnet procedure;

o “Resnet” stands for the same architecture
as “RelLU"” but with skip connections;

e “CReLU w/ LL" stands for a deep network
(no residual connections) with CReLU
activations and “look linear” initialization.

The standard network (with CReLU and no resid-
ual connection) initialized with the “look linear”
procedure is competitive with the resnet architec-
ture.

We can summarize the techniques which have enabled the training of very deep
architectures:

e rectifiers to prevent the gradient from vanishing during the backward pass,

dropout to force a distributed representation,

batch normalization to dynamically maintain the statistics of activations,

identity pass-through to keep a structured gradient and distribute representation,

smart initialization to put the gradient in a good regime.

Francois Fleuret Deep learning / 6.5. Residual networks 21 /21

Notes

The structures were carefully engineered to make
them trainable: The architectures may results
in a “less optimal” mapping space, but the ease
of optimization allows to eventually get a better
trained model.

References

D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. Wan-Duo Ma, and B. McWilliams. The shattered
gradients problem: If resnets are the answer, then what is the question? CoRR,
abs/1702.08591, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. ldentity mappings in deep residual networks. CoRR,
abs/1603.05027, 2016.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic depth.
CoRR, abs/1603.09382, 2016.

R. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. CoRR, abs/1505.00387, 2015.

A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow
networks. CoRR, abs/1605.06431, 2016.

	Shattered Gradient
	References

