
Deep learning

9.2. Looking at activations

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

An alternative approach is to look at the activations themselves.

Since the convolutional layers maintain the 2d structure of the signal, the
activations can be visualized as images, where the local coding at any location
of an activation map is associated to the original content at that same location.

Given the large number of channels, we have to pick a few at random.

Since the representation is distributed across multiple channels, individual
channel have usually no clear semantic.

François Fleuret Deep learning / 9.2. Looking at activations 1 / 20

A MNIST character with LeNet (LeCun et al., 1998).

François Fleuret Deep learning / 9.2. Looking at activations 2 / 20

Notes

These images show the activation maps in the
successive layers. We use red for positive values,
blue for negatives ones, and white for zero.
The top-left grayscale image is the input signal,
and top-right red one is its signed version, which
has only positive values.
The first row shows the output of the first convo-
lutional layer, which exhibits nice edge detections.
The second row shows activations after the first
ReLU. This is why there only have positive val-
ues.
The third row shows activations after the first
max pooling layer, which reduces the resolution.
This is why the images are smaller and more
pixelated.
The fourth row is the activations after the second
convolution, and the fifth row after the second
ReLU. These two last rows are harder to inter-
pret.

An RGB image with AlexNet (Krizhevsky et al., 2012).

François Fleuret Deep learning / 9.2. Looking at activations 3 / 20

Notes

These images shows activations of AlexNet when
trained for image classification on ImageNet.
The first row shows the original image on the
left, and its three channels after normalization on
the right. The normalization subtracts the mean
and divide by the standard deviation, hence may
produce negative values.
Although it is quite hard to precisely tell the role
of the filters, we can see some edges detectors
and some dark area detectors. The deeper we go
in the network, the more difficult it becomes to
understand what is going on.

ILSVRC12 with ResNet152 (He et al., 2015).

François Fleuret Deep learning / 9.2. Looking at activations 4 / 20

Notes

As on the previous slide, the first row shows the
original image on the left, and its three channels
after normalization on the right.
The next rows show the activations after the
ReLU following a ResNet block (this is why we
only see positive values). ResNet reduces the
activation maps less than AlexNet and we obtain
larger images.
Yet again it is hard to understand what is really
encoded, although the activation maps do not
show random noise at all, rather blobs that can be
interpreted as a part of an object being detected.

Yosinski et al. (2015) developed analysis tools to visit a network and look at the internal
activations for a given input signal.

This allowed them in particular to find units with a clear semantic in an AlexNet-like
network trained on ImageNet.

François Fleuret Deep learning / 9.2. Looking at activations 5 / 20

Figure 2. A view of the 13×13 activations of the 151st channel on
the conv5 layer of a deep neural network trained on ImageNet, a
dataset that does not contain a face class, but does contain many
images with faces. The channel responds to human and animal
faces and is robust to changes in scale, pose, lighting, and context,
which can be discerned by a user by actively changing the scene
in front of a webcam or by loading static images (e.g. of the lions)
and seeing the corresponding response of the unit. Photo of lions
via Flickr user arnolouise, licensed under CC BY-NC-SA 2.0.

• Although the last three layers are sensitive to small
input changes, much of the lower layer computation
is more robust. For example, when visualizing the

conv5 layer, one can find many invariant detectors
for faces, shoulders, text, etc. by moving oneself
or objects in front of the camera. Even though the
1000 classes contain no explicitly labeled faces or
text, the network learns to identify these concepts sim-
ply because they represent useful partial information
for making a later classification decision. One face
detector, denoted conv5151 (channel number 151 on
conv5), is shown in Figure 2 activating for human
and lion faces and in Figure 1 activating for a cat
face. Zhou et al. (2014) recently observed a similar
effect where convnets trained only to recognize dif-
ferent scene types — playgrounds, restaurant patios,
living rooms, etc. — learn object detectors (e.g. for
chairs, books, and sofas) on intermediate layers.

The reader is encouraged to try this visualization tool out
for him or herself. The code, together with pre-trained
models and images synthesized by gradient ascent, can be
downloaded at http://yosinski.com/deepvis.

3. Visualizing via Regularized Optimization
The second contribution of this work is introducing several
regularization methods to bias images found via optimiza-
tion toward more visually interpretable examples. While
each of these regularization methods helps on its own, in
combination they are even more effective. We found use-
ful combinations via a random hyperparameter search, as
discussed below.

Formally, consider an image x ∈ RC×H×W , where C = 3
color channels and the height (H) and width (W) are both
227 pixels. When this image is presented to a neural net-
work, it causes an activation ai(x) for some unit i, where
for simplicity i is an index that runs over all units on all lay-
ers. We also define a parameterized regularization function
Rθ(x) that penalizes images in various ways.

Our network was trained on ImageNet by first subtract-
ing the per-pixel mean of examples in ImageNet before in-
putting training examples to the network. Thus, the direct
input to the network, x, can be thought of as a zero-centered
input. We may pose the optimization problem as finding an
image x∗ where

x∗ = argmax
x

(ai(x)−Rθ(x)) (1)

In practice, we use a slightly different formulation. Be-
cause we search for x∗ by starting at some x0 and taking
gradient steps, we instead define the regularization via an
operator rθ(·) that maps x to a slightly more regularized
version of itself. This latter definition is strictly more ex-
pressive, allowing regularization operators rθ that are not

5

(Yosinski et al., 2015)

François Fleuret Deep learning / 9.2. Looking at activations 6 / 20

Notes

This illustration shows the activations (right col-
umn) of the 151st channel of the conv5 layer of
AlexNet for the input images (left column).
The activation maps are of size 13 × 13 and have
been rescaled to the original image size to match
with the receptive fields.
This particular channel has a high response for
face pattern of animals and humans. This is very
interesting because when the network was trained,
the notion of face was never provided as is, but
just image classes (lion, tiger, human, etc.). And
even if the class were provided, AlexNet is a
classification network for which no location is
provided.
It is very satisfying to see that a clear part-like and
semantic-like detector is emerging in the network,
even though the information about the location
of these specific parts are never provided, but
only indirectly available through the labels at the
full image level. It is also interesting to see that
this structure appears in different classes: the
network has “factorized” the detection of this
structure to perform the classification efficiently.

Prediction of 2d dynamics with a 18 layer residual network.

Gn Sn Rn

(Fleuret, 2016)

François Fleuret Deep learning / 9.2. Looking at activations 7 / 20

Notes

Here a ResNet is trained to predict the dynamics
of rigid 2d rectangles.

• Sn is an image of rectangles dispatched in
2d randomly so that they do not overlap.

• Gn is the location of a “grabbing point”
selected at random in the rectangles’
interior.

• Rn is the resulting configuration after
simulating several time steps during which
a force was applied upward at the grabbing
point. Images between Gn and Rn are the
intermediate steps.

The simulator takes into account the physics and
dynamics, torque, inertia, collisions.
For instance, on the first row, the upper left rect-
angle is selected (roughly at its top left corner)

and we can see that it is moved upward in the
next images on the right. Since there is no rect-
angle above, only this one is displaced. On the
second row, one rectangle in the middle is pulled
upwards, and after four steps, has pushed on two
rectangles: one above and one on its right.
We have trained a network which takes as input
the two images Gn and Sn as a 2 × H × W ten-
sor, and should predict the final configuration Rn

as an image.
Note that the rectangle positions are not pro-
vided as-is, rather the network has to figure out
the composition structure of the image and the
underlying geometric constraints from the pixels
alone.

Sn

Gn

Rn

R̂n

(Fleuret, 2016)

François Fleuret Deep learning / 9.2. Looking at activations 8 / 20

Notes

The network can successfully be trained for the
task.
The images show for test samples (one column
per test sample):

• Sn: the initial configuration,

• Gn: the grabbing point at which the
constant force is applied upwards,

• Rn: the ground simulated truth, in which
the difference with Sn is highlighted in
black,

• R̂n: the prediction of the network after
training, similarly highlighted.

Visually, the network correctly predicts the out-
come of the displacement as R̂n ≃ Rn look simi-
lar.

Sn

Gn

Rn

R̂n

1/1024 2/1024 3/1024

. . .

511/1024 512/1024 513/1024 514/1024

(Fleuret, 2016)

François Fleuret Deep learning / 9.2. Looking at activations 9 / 20

Notes

To have a better understanding of how well it
works, we have ranked 1024 test images by de-
creasing prediction error. The images on the left
show the worst predictions, while the images on
the right are around the median.
The worst predictions correspond to difficult sit-
uations where the network fails at predicting a
collision and the resulting chain of collision and
subsequent displacement of neighbor boxes.
These results are satisfactory: with an image as
input, the network was able to understand the
notion of solid entity delimited by edges which
should move in a consistent manner, maintaining
its shape while translating and rotating. It addi-
tionally modeled properly the dynamics, torque,
and collisions.

(Fleuret, 2016)

François Fleuret Deep learning / 9.2. Looking at activations 10 / 20

Notes

The activation maps after each residual block
can be visualized as images. The pair of images
at the top is the input while the next nine rows
show each the sixteen activation maps of each
of the nine residual blocks. The image at the
bottom is the output.
Once again, it is very hard to have a precise
understanding of what is going on.
Some channels are able to identify the part which
should be moved by having a strong response
on it, and some other channels are able to re-
move this part. This is indeed important to
identify what rectangles should not take part in
the motion to leave the proper parts of the image
unchanged and synthetize images without the
moving parts.

Layers as embeddings

François Fleuret Deep learning / 9.2. Looking at activations 11 / 20

In the classification case, the network can be seen as a series of processings aiming as
disentangling classes to make them easily separable for the final decision.

In this perspective, it makes sense to look at how the samples are distributed spatially
after each layer.

François Fleuret Deep learning / 9.2. Looking at activations 12 / 20

The main issue to do so is the dimensionality of the signal. If we look at the total
number of dimensions in each layer:

• A MNIST sample in a LeNet goes from 784 to up to 18k dimensions,

• A ILSVRC12 sample in ResNet152 goes from 150k to up to 800k dimensions.

This requires a mean to project a [very] high dimension point cloud into a 2d or 3d
“human-brain accessible” representation

François Fleuret Deep learning / 9.2. Looking at activations 13 / 20

We have already seen PCA and k-means as two standard methods for dimension
reduction, but they poorly convey the structure of a smooth low-dimension and non-flat
manifold.

It exists a plethora of methods that aim at reflecting in low-dimension the structure of
data points in high dimension.

François Fleuret Deep learning / 9.2. Looking at activations 14 / 20

Notes

k-means is a good methods when we have clus-
ters, but not when having smooth and continuous
manifold,
When the data is distributed along a curved man-
ifold, PCA “wastes” dimensions to capture the
curvature, even if its intrinsic dimension is small.

Given data-points in high dimension

𝒟 =
{
xn ∈ RD , n = 1, . . . ,N

}
the objective of data-visualization is to find a set of corresponding low-dimension points

ℰ =
{
yn ∈ RC , n = 1, . . . ,N

}
such that the positions of the ys “reflect” that of the xs.

François Fleuret Deep learning / 9.2. Looking at activations 15 / 20

Notes

To make the representation meaningful to the
human eye, C should be 2 or 3.
The projection should provide a good sense in
terms of both metrics and geometrical (grouping,
topology, connexity) to get an understanding of
where the xns are dispatched in the high dimen-
sional space.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) proposed by van der
Maaten and Hinton (2008) optimizes with SGD the yi s so that the distributions of
distances to close neighbors of each point are preserved.

It actually matches for DKL two distance-dependent distributions: Gaussian in the
original space, and Student t-distribution in the low-dimension one.

François Fleuret Deep learning / 9.2. Looking at activations 16 / 20

The scikit-learn toolbox

http://scikit-learn.org/

is built around SciPy, and provides many machine learning algorithms, in particular
embeddings, among which an implementation of t-SNE.

The only catch to use it in PyTorch is the conversions to and from numpy arrays.

from sklearn.manifold import TSNE

x is the array of the original high-dimension points
x_np = x.numpy()
y_np = TSNE(n_components = 2, perplexity = 50).fit_transform(x_np)
y is the array of corresponding low-dimension points
y = torch.from_numpy(y_np)

n_components specifies the embedding dimension and perplexity states [crudely] how
many points are considered neighbors of each point.

François Fleuret Deep learning / 9.2. Looking at activations 17 / 20

Notes

The perplexity can be interpreted as the “number
of points” we consider neighbors of xn.

http://scikit-learn.org/

t-SNE unrolling of the swiss roll (with one noise dimension)

François Fleuret Deep learning / 9.2. Looking at activations 18 / 20

Notes

We consider a simple example with data points
from R4 where the first three dimensions are
dispatched on a rolled regular grid (a “Swiss
roll”) and the last dimension is pure Gaussian
noise. The left picture shows the projection of
the three first coordinates, where the points are
colored by row.
The right picture shows the result obtained with
t-SNE to project the 4d points in 2d.
Although the projection is not perfect, it captured
a lot of the structure. Since t-SNE optimizes the
location of the yn, it may have gotten stuck
in a local minimum, and could not “fix” some
shearing. But overall, many neighborhoods are
maintained.

Input Layer 1

Layer 4 Layer 7

t-SNE for LeNet on MNIST

François Fleuret Deep learning / 9.2. Looking at activations 19 / 20

Notes

We apply t-SNE on a subset of the MNIST data
set as encoded in successive layers of a LeNet
model.
Each point corresponds to a sample and each
color corresponds to a class.
When we apply t-SNE directly on the input im-
ages of dimension 784, we obtain some clusters
of classes: the morphology of the distribution of
MNIST is such that a simple t-SNE on the raw
data make it easy to do the classification.
As t-SNE is applied on the activation maps pro-
duced by deeper layers, we can see that classes
get pushed away from each other.

Input Layer 4 Layer 14

Layer 34 Layer 44 Layer 54

Layer 60 Layer 64 Layer 65

t-SNE for a home-baked ResNet (no pooling, 66 layers) CIFAR10

François Fleuret Deep learning / 9.2. Looking at activations 20 / 20

Notes

When we apply the exact same process a ResNet
trained on CIFAR10, we see that the task is more
difficult.
The result of t-SNE on the input data shows that
the classes are deeply mixed. No cluster appear
in the low dimensional space.
When going though layers, the population get
more and more separated. Layer 64 is the last
layer before the final global average pooling, and
layer 65 is the last layer before the final decision.
We can see that layers are pushing points in the
high dimensional space far from each other and
reconfigure the topology of the space so that
populations that have to be processed the same
way will be at the same location in a Euclidean
sense.

References

F. Fleuret. Predicting the dynamics of 2d objects with a deep residual network. CoRR,
abs/1610.04032, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. In Neural Information Processing Systems (NIPS), 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

L. van der Maaten and G. Hinton. Visualizing high-dimensional data using t-SNE. Journal of
Machine Learning Research (JMLR), 9:2579–2605, 2008.

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through
deep visualization. In Deep Learning Workshop, International Conference on Machine Learning
(WS/ICML), 2015.

	Layers as embeddings
	References

