Deep learning

9.3. Visualizing the processing in the input

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

Occlusion sensitivity

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 1/34

Another approach to understanding the functioning of a network is to look at
the behavior of the network “around” an image.

For instance, we can get a simple estimate of the importance of a part of the
input image for a given output by computing the difference between:

1. the value of that output on the original image, and

2. the value of the same output with that part occluded.

This is computationally intensive since it requires as many forward passes as
there are locations of the occlusion mask, ideally the number of pixels.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 2 /34

3/ 34

Deep learning / 9.3. Visualizing the processing in the input

Francois Fleuret

Notes

A small 32 x 32 square will be moved at every
single location in the images. The first row shows
the original images, while the second shows the
perturbed images at a given location.

Original images

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 4 /34
Notes
At every location in a given image, the original image,
e we occlude a 32 x 32 square by filling it]]
with the mean pixel value, e blue values when the true class is predicted
. with a greater confidence on the perturbed
e we compute the response of the classifier image
for the predicted class of the image
(labrador for instance), We see that when hiding the head of the dog,
e we compute the difference between the Ehe netw?rk |s.Iess confident in predlctflng class
score of the predicted class on the original, .Iabrador : This shows that the head o the.do.g
and the score of this same class when the IS a very important queue, because when it is
image is occluded at that location. hidden, the response goes down strongly.

For the elephant, it seems that its ears are the

important cues.

For the pinguin, surprisingly, the ice matters a

lot and not the pinguin itself.

e red pixels when the score of the true class For the car, the back and the front are the im-
on the perturbed image is lower than on portant parts.

At each location, we have a score showing how
the response of the true class evolves, and we
represent it as an heat map:

Saliency maps

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 5/ 34

An alternative is to compute the gradient of an output with respect to the input (Erhan
et al., 2009; Simonyan et al., 2013), e.g.

Vxfe(x; w)

where | x stresses that the gradient is computed with respect to the input x and not as
usual with respect to the parameters w.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 6 /34

This can be implemented with torch.autograd.grad to compute the gradient w.r.t.
the input image (this has the advantage of not changing the model’'s parameter
gradients, contrary to torch.autograd.backward.)

input.requires_grad_()
output = model(input)
grad_input, = torch.autograd.grad(output[0, c], input)

Note that since torch.autograd.grad computes the gradient of a function with
possibly multiple inputs, the returned result is a tuple.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 7/ 34

Notes

Remember that PyTorch models take as input a
batch of samples. So the output of one classifi-
cation network is of size N x C, where N is the
number of samples in the batch to process, and
C the number of classes.

Here, we input a batch of one sample, so we
access the prediction of the true class with
output [0, c].

The resulting maps are quite noisy. For instance with AlexNet:

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 8 /34

Notes

The images at the bottom where generated by
computing the gradient of the most responsive
unit w.r.t. the input image, and summing the
gradient over the three input channels red, green,
and blue to produce a gray-scale image.

We have the same behavior as with the occlusion
sensitivity. For instance, pixels around the dog
head have a high gradient: perturbing the pixels
of the head will have more impact on the output
class prediction than perturbing its body.

These results are more noisy because we are at
the pixel level.

Francois Fleuret

as, o (x + te)

0o 02 04 06 08 10

Figure 2. The partial derivative of S. with respect to the RGB val-
ues of a single pixel as a fraction of the maximum entry in the
gradient vector, max; gsé (t), (middle plot) as one slowly moves
away from a baseline imalge z (left plot) to a fixed location x + €
(right plot). € is one random sample from A/(0, 0.01%). The fi-
nal image (x + ¢) is indistinguishable to a human from the origin

image x.

Deep learning / 9.3. Visualizing the processing in the input

This is due to the local irregularity of the network’s response as a function of the input.

(Smilkov et al., 2017)

9/ 34

Smilkov et al. (2017) proposed to smooth the gradient with respect to the input image
by averaging over slightly perturbed versions of the latter.

N

~ 1

Vixfy(x;w) = N ZV|Xfy(X + €n; W)
n=1

where €1,..., ey are i.i.d of distribution .#(0,5°l), and o is a fraction of the gap A
between the maximum and the minimum of the pixel values.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 10 / 34

A simple version of this “SmoothGrad” approach can be implemented as follows

std = std_fraction * (img.max() - img.min())
acc_grad = img.new_zeros(img.size())

for q in range(nb_smooth): # This should be done with mini-batches
noisy_input = img + img.new(img.size()).normal_(0, std)

noisy_input.requires_grad_()
output = model(noisy_input)

grad_input, = torch.autograd.grad(output[0, c], noisy_input)

acc_grad += grad_input

acc_grad = acc_grad.abs().sum(1) # sum across channels

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input

Notes

std_fraction is typically between 0.1 and 0.25.
Remember that new_x* initialize tensors with the
same type and same device as the input tensor.
Here, acc_grad will be on the GPU if img already
is, on the CPU otherwise.

At then end, .sum(1) sums across RGB channels,
so we go from a tensor of size 1 X 3 X 224 x 224
to a tensor of size 1 x 224 x 224, which can be
represented as a gray-scale image. Here, the 1 is
for a mini-batch of one sample.

This code could be made more efficient by pro-
cessing the perturbed images in mini-batches.

11/ 34

Original images

SmoothGrad, VGG19, o = £

7 &
- o

e
il

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 12 /34

Notes

The middle row is the original version by comput-
ing the derivative w.r.t. the original input only.
The bottom row is when averaging over a hundred
perturbed images.

The smooth version exhibit more details such as
the ears of the dog, the legs of the elephant, the
head of the pinguin the wheels of the car.
Overall, we get a sense of what the important
parts of the image are, and which of them are
carrying information for the prediction.

Deconvolution and guided back-propagation

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 13 /34

Zeiler and Fergus (2014) proposed to invert the processing flow of a convolutional
network by constructing a corresponding deconvolutional network to compute the
“activating pattern” of a sample.

As they point out, the resulting processing is identical to a standard backward pass,
except when going through the RelL U layers.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 14 / 34

Remember that if s is one of the input to a ReLU layer, and x the corresponding
output, we have for the forward pass

x = max(0,s),

and for the backward
ot ot

— =1 —.
Os {s>0} ox

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 15/ 34

Zeiler and Fergus's deconvolution can be seen as a backward pass where we propagate
back through RelLU layers the quantity

(0o ot 1 ot
max —) = , —
" Ox {35>0} ax’

ot ot
e = lis>oy Ix’

instead of the usual

This quantity is positive for units whose output has a positive contribution to the
response, kills the others, and is not modulated by the pre-layer activation s.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 16 / 34

Springenberg et al. (2014) improved upon the deconvolution with the guided
back-propagation, which aims at the best of both worlds: Discarding structures which
would not contribute positively to the final response, and discarding structures which
are not already present.

It back-propagates through the RelLU layers the quantity

o¢
Lis>oylpoc .oy 5~

which keeps only units which have a positive contribution and activation.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 17 / 34

So these three visualization methods differ only in the quantities propagated through
ReLU layers during the back-pass:

e back-propagation (Erhan et al., 2009; Simonyan et al., 2013):

or
lis>0y Ix’

o deconvolution (Zeiler and Fergus, 2014):
or

1 il
{3>0} ox’
o guided back-propagation (Springenberg et al., 2014):

o¢
Lis>oylear oy 5

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 18 / 34

These procedures can be implemented simply in PyTorch by changing the nn.ReLU’s
backward pass.

The class nn.Module provides methods to register “hook” functions that are called
during the forward or the backward pass, and can implement a different computation for
the latter.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 19 / 34

For instance

>>> x = torch.tensor([1.23, -4.56 1)
>>> m nn.ReLUQ)

>>> m(x)

tensor([1.2300, 0.0000])

>>> def my_hook(m, input, output):
print(str(m) + ' got ' + str(input[0].size()))

>>> handle = m.register_forward_hook(my_hook)
>>> m(x)

ReLU() got torch.Size([2])

tensor([1.2300, 0.0000])

>>> handle.remove()
>>> m(x)
tensor ([1.2300, 0.0000])

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input

Notes

The top example shows the default behavior of
nn.ReLU() which simply set to zero negative
coefficients of the input and returns the new
tensor.

We define a hook my_hook which simply prints
the name of the module and the size of the input.
Then we attach the hook to the forward pass
of out model m. Attaching the hook returns a
handle useful for removing the hook later.
PyTorch provides:

e “forward pre-hooks” through
register_module_forward_pre_hook.
This hook is called before forward is
invoked.

e “forward hooks” through
register_module_forward_hook. This
hook is called after forward has computed
the output.

e “backward hooks” through
register_module_backward_hook. This
hook is called after the module has
computed the gradient w.r.t. its input.

20/ 34

Using hooks, we can implement the deconvolution as follows:

def relu_backward_deconv_hook(module, grad_input, grad_output):
return F.relu(grad_output[0]),

def equip_model_deconv(model):
for m in model.modules():
if isinstance(m, nn.ReLU):
m.register_backward_hook(relu_backward_deconv_hook)

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 21 / 34

Francois Fleuret

def grad_view(model, image_name):
to_tensor = transforms.ToTensor ()
img = to_tensor(PIL.Image.open(image_name))
img = 0.5 + 0.5 * (img - img.mean()) / img.std()

model.to(device)
img = img.to(device)

input = img.view(l, img.size(0), img.size(1), img.size(2)).requires_grad_()

output = model(input)
result, = torch.autograd.grad(output.max(), input)

result = result / result.max() + 0.5

return result

model = models.vggl6(weights = 'IMAGENET1K_V1')
model.eval()

model = model.features

equip_model_deconv(model)

result = grad_view(model, 'blacklab.jpg')
utils.save_image(result, 'blacklab-vggl6-deconv.png')

Deep learning / 9.3. Visualizing the processing in the input

22/ 34

The code is the same for the guided back-propagation, except the hooks themselves:

def relu_forward_gbackprop_hook(module, input, output):
module.input_kept = input [0]

def relu_backward_gbackprop_hook(module, grad_input, grad_output):
return F.relu(grad_output[0]) * F.relu(module.input_kept).sign(),

def equip_model_gbackprop(model):
for m in model.modules():
if isinstance(m, nn.ReLU):
m.register_forward_hook(relu_forward_gbackprop_hook)
m.register_backward_hook(relu_backward_gbackprop_hook)

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 23 / 34

Gradient

Deconvolution

Guided-backprop

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 24 / 34

Experiments with an AlexNet-like network. Original images + deconvolution (or filters)
for the top-9 activations for channels picked randomly.

oo 7
N/ ms=
_ e 77 T

=

LE) e

(Zeiler and Fergus, 2014)

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 25 / 34

(Zeiler and Fergus, 2014)

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 26 / 34

Grad-CAM

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 27 / 34

Gradient-weighted Class Activation Mapping (Grad-CAM) proposed by Selvaraju et al.
(2016) visualizes the importance of the input sub-parts according to the activations in a
specific layer.

It computes a sum of the activations weighted by the average gradient of the output of
interest w.r.t. individual channels.

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 28 / 34

Formally, let k € {1,..., C} be a channel number, A* € R"*W the output feature map
k of the selected layer, ¢ a class number, and y© the network’s logit for that class.

The channel weights are

1 L ayc
ai:W;;aA,ﬁj'

And the final localization map is

C
LGrag.cam = RelU (Z O‘iAk> :
k=1

Frangois Fleuret Deep learning / 9.3. Visualizing the processing in the input 29 / 34

We are going to test it with VGG19.

VGG (
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) : ReLU(inplace=True)
/.../
(34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(35): RelLU(inplace=True)
(36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool) : AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(
(0): Linear(in_features=25088, out_features=4096, bias=True)
(1) : ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 30 / 34

Francois Fleuret

To implement Grad-CAM, first define hooks to store the feature maps in the forward
pass, and the gradient w.r.t. them in the backward:

def hook_store_A(module, input, output):
module.A = output [0]

def hook_store_dydA(module, grad_input, grad_output):
module.dydA = grad_output [0]

Then, load a pre-trained VGG19, and install the hooks in the last ReLU layer of the
convolutional part:

model = torchvision.models.vggl9(weights = 'IMAGENET1K_V1')
model.eval()

layer = model.features[35] # Last ReLU of the conv layers

layer.register_forward_hook(hook_store_A)
layer.register_backward_hook (hook_store_dydA)

Deep learning / 9.3. Visualizing the processing in the input 31/ 34

Load an image and make it a one sample batch:

to_tensor = torchvision.transforms.ToTensor()

input = to_tensor(PIL.Image.open('example_images/elephant_hippo.png')) .unsqueeze(0)

1 H Cc .
Compute the network’s output, the gradient, and Lg _, cau:

output = model (input)

c = 386 # African elephant
output [0, c].backward()

alpha = layer.dydA.mean((2, 3), keepdim = True)
L = torch.relu((alpha * layer.A).sum(l, keepdim = True))

Save it as a resized colored heat-map:

L
L

L / L.max()
F.interpolate(L, size = (input.size(2), input.size(3)),
mode = 'bilinear', align_corners = False)

1 = L.view(L.size(2), L.size(3)).detach() .numpy()
PIL.Image.fromarray(numpy.uint8(cm.gist_earth(1l) * 255)).save('result.png')

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input

Notes

unsqueeze (0) turns the input tensor of size
3 X H X W into a batch of a single tensor of
size 1 X 3 x Hx W.

mean((2, 3), keepdim = True) computes the
mean over the height and width of the image. So
we go from a tensor of size 1 X 3 x H X W to
a tensor of size 1 X 3 X 1 x 1. The last two “1"
are preserved by keepdim = True.

gist_earth is a color map with orange color
for high values, blue for low ones, and green for
intermediate ones.

32/ 34

African elephant Hippopotamus

Ox Fountain

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 33 /34

Coffee m Bagel

Bee Daisy

Francois Fleuret Deep learning / 9.3. Visualizing the processing in the input 34 / 34

References

D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep
network. Technical Report 1341, Departement IRO, Université de Montréal, 2009.

R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. CoRR, abs/1610.02391, 2016.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. CoRR, abs/1312.6034, 2013.

D. Smilkov, N. Thorat, B. Kim, F. Viegas, and M. Wattenberg. Smoothgrad: removing noise by
adding noise. CoRR, abs/1706.03825, 2017.

J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all
convolutional net. CoRR, abs/1412.6806, 2014.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European
Conference on Computer Vision (ECCV), 2014.

	Occlusion sensitivity
	Saliency maps
	Deconvolution and guided back-propagation
	Grad-CAM
	References

