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Many applications require the automatic extraction of “refined” information
from raw signal (e.g. image recognition, automatic speech processing, natural
language processing, robotic control, geometry reconstruction).

(ImageNet)
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Our brain is so good at interpreting visual information that the “semantic gap”
is hard to assess intuitively.
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Our brain is so good at interpreting visual information that the “semantic gap”
is hard to assess intuitively.

This: ﬁ is a horse
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>>> from torchvision.datasets import CIFAR10
>>> cifar = CIFAR10('./data/cifar10/', train=True, download=True)
Files already downloaded and verified
>>> x = torch.from_numpy(cifar.data) [43].permute(2, 0, 1)
>>> x[:, :4, :8]
tensor([[[ 99, 98, 100, 103, 105, 107, 108, 110],
[100, 100, 102, 105, 107, 109, 110, 112],
[104, 104, 106, 109, 111, 112, 114, 116],
[109, 109, 111, 113, 116, 117, 118, 12011,

[[166, 165, 167, 169, 171, 172, 173, 175],
[166, 164, 167, 169, 169, 171, 172, 174],
[169, 167, 170, 171, 171, 173, 174, 1761,
[170, 169, 172, 173, 175, 176, 177, 17811,

[[198, 196, 199, 200, 200, 202, 203, 204],
[195, 194, 197, 197, 197, 199, 200, 2011,
[197, 195, 198, 198, 198, 199, 201, 202],
[197, 196, 199, 198, 198, 199, 200, 201]]], dtype=torch.uint8)
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Extracting semantic automatically requires models of extreme complexity, which
cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.
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This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through
experiences.
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Extracting semantic automatically requires models of extreme complexity, which
cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through
experiences.

Deep learning encompasses software technologies to scale-up to billions of
model parameters and as many training examples.
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There are strong connections between standard statistical modeling and
machine learning.
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There are strong connections between standard statistical modeling and
machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression”) with prior knowledge in pre-processing.
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There are strong connections between standard statistical modeling and
machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression”) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow this
dichotomy. They consist of “deep” stacks of parametrized processing.
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From artificial neural networks to “Deep Learning”
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Networks of “Threshold Logic Unit”

(McCulloch and Pitts, 1943)
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Frank Rosenblatt working on the Mark | perceptron (1956)

1949 — Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).
1951 — Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
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Frank Rosenblatt working on the Mark | perceptron (1956)

1949 — Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).
1951 — Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 — Frank Rosenblatt creates a perceptron to classify 20 x 20 images.
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Frank Rosenblatt working on the Mark | perceptron (1956)

1949 — Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).
1951 — Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 — Frank Rosenblatt creates a perceptron to classify 20 x 20 images.

1959 — David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex (Hubel and Wiesel, 1962).
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Frank Rosenblatt working on the Mark | perceptron (1956)

1949 — Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).
1951 — Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 — Frank Rosenblatt creates a perceptron to classify 20 x 20 images.

1959 — David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex (Hubel and Wiesel, 1962).

1982 — Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).
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Neocognitron

Do | k7!

Do |k

(Fukushima, 1980)

This model follows Hubel and Wiesel's results.
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Network for the T-C problem
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Trained with back-prop.

(Rumelhart et al., 1988)
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LeNet family
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(LeCun et al., 1989)
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ImageNet Large Scale Visual Recognition Challenge.

Started 2010, 1 million images, 1000 categories
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AlexNet

Max Max
pooling pooling

(Krizhevsky et al., 2012)
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Top-5 error rate on ImageNet
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(Gershgorn, 2017)
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GoogleNet (Szegedy et al., 2015) ResNet (He et al., 2015)
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(Vaswani et al., 2017)
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Deep learning is built on a natural generalization of a neural network: a graph
of tensor operators, taking advantage of

« the chain rule (aka “back-propagation”),
o stochastic gradient decent,
e convolutions,

o parallel operations on GPUs.

This does not differ much from networks from the 90s.
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This generalization allows to design complex networks of operators dealing with
images, sound, text, sequences, etc. and to train them end-to-end.
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The End
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