
Deep learning

1.1. From neural networks to deep learning

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Many applications require the automatic extraction of “refined” information
from raw signal (e.g. image recognition, automatic speech processing, natural
language processing, robotic control, geometry reconstruction).

(ImageNet)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 1 / 18

Our brain is so good at interpreting visual information that the “semantic gap”
is hard to assess intuitively.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 2 / 18

Our brain is so good at interpreting visual information that the “semantic gap”
is hard to assess intuitively.

This: is a horse

François Fleuret Deep learning / 1.1. From neural networks to deep learning 2 / 18

François Fleuret Deep learning / 1.1. From neural networks to deep learning 2 / 18

François Fleuret Deep learning / 1.1. From neural networks to deep learning 2 / 18

>>> from torchvision.datasets import CIFAR10
>>> cifar = CIFAR10('./data/cifar10/', train=True, download=True)
Files already downloaded and verified
>>> x = torch.from_numpy(cifar.data)[43].permute(2, 0, 1)
>>> x[:, :4, :8]
tensor([[[99, 98, 100, 103, 105, 107, 108, 110],

[100, 100, 102, 105, 107, 109, 110, 112],
[104, 104, 106, 109, 111, 112, 114, 116],
[109, 109, 111, 113, 116, 117, 118, 120]],

[[166, 165, 167, 169, 171, 172, 173, 175],
[166, 164, 167, 169, 169, 171, 172, 174],
[169, 167, 170, 171, 171, 173, 174, 176],
[170, 169, 172, 173, 175, 176, 177, 178]],

[[198, 196, 199, 200, 200, 202, 203, 204],
[195, 194, 197, 197, 197, 199, 200, 201],
[197, 195, 198, 198, 198, 199, 201, 202],
[197, 196, 199, 198, 198, 199, 200, 201]]], dtype=torch.uint8)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 3 / 18

Extracting semantic automatically requires models of extreme complexity, which
cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through
experiences.

Deep learning encompasses software technologies to scale-up to billions of
model parameters and as many training examples.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 4 / 18

Extracting semantic automatically requires models of extreme complexity, which
cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through
experiences.

Deep learning encompasses software technologies to scale-up to billions of
model parameters and as many training examples.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 4 / 18

Extracting semantic automatically requires models of extreme complexity, which
cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through
experiences.

Deep learning encompasses software technologies to scale-up to billions of
model parameters and as many training examples.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 4 / 18

There are strong connections between standard statistical modeling and
machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression”) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow this
dichotomy. They consist of “deep” stacks of parametrized processing.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 5 / 18

There are strong connections between standard statistical modeling and
machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression”) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow this
dichotomy. They consist of “deep” stacks of parametrized processing.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 5 / 18

There are strong connections between standard statistical modeling and
machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression”) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow this
dichotomy. They consist of “deep” stacks of parametrized processing.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 5 / 18

From artificial neural networks to “Deep Learning”

François Fleuret Deep learning / 1.1. From neural networks to deep learning 6 / 18

Networks of “Threshold Logic Unit”

130 LOGICAL CALCULUS FOR NERVOUS ACTIVITY

b

e ~ ~

9

h

F I G ~ E 1

d

f

(McCulloch and Pitts, 1943)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 7 / 18

Frank Rosenblatt working on the Mark I perceptron (1956)

1949 – Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).

1951 – Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).

1958 – Frank Rosenblatt creates a perceptron to classify 20× 20 images.

1959 – David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex (Hubel and Wiesel, 1962).

1982 – Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).

François Fleuret Deep learning / 1.1. From neural networks to deep learning 8 / 18

Frank Rosenblatt working on the Mark I perceptron (1956)

1949 – Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).

1951 – Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).

1958 – Frank Rosenblatt creates a perceptron to classify 20× 20 images.

1959 – David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex (Hubel and Wiesel, 1962).

1982 – Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).

François Fleuret Deep learning / 1.1. From neural networks to deep learning 8 / 18

Frank Rosenblatt working on the Mark I perceptron (1956)

1949 – Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).

1951 – Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).

1958 – Frank Rosenblatt creates a perceptron to classify 20× 20 images.

1959 – David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex (Hubel and Wiesel, 1962).

1982 – Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).

François Fleuret Deep learning / 1.1. From neural networks to deep learning 8 / 18

Frank Rosenblatt working on the Mark I perceptron (1956)

1949 – Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).

1951 – Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).

1958 – Frank Rosenblatt creates a perceptron to classify 20× 20 images.

1959 – David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex (Hubel and Wiesel, 1962).

1982 – Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).

François Fleuret Deep learning / 1.1. From neural networks to deep learning 8 / 18

Neocognitron

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

(Fukushima, 1980)

This model follows Hubel and Wiesel’s results.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 9 / 18

Network for the T-C problem

Trained with back-prop.

(Rumelhart et al., 1988)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 10 / 18

LeNet family

(LeCun et al., 1989)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 11 / 18

ImageNet Large Scale Visual Recognition Challenge.

Started 2010, 1 million images, 1000 categories

(http://image-net.org/challenges/LSVRC/2014/browse-synsets)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 12 / 18

AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

(Krizhevsky et al., 2012)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 13 / 18

Top-5 error rate on ImageNet

2010 2011 2012 2013 2014 2015 2016 2017
0

10

20

30

40

50

60

E
rr

or

Human performance

(Gershgorn, 2017)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 14 / 18

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1×1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224×224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60× 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

GoogleNet (Szegedy et al., 2015) ResNet (He et al., 2015)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 15 / 18

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

(Vaswani et al., 2017)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 16 / 18

Deep learning is built on a natural generalization of a neural network: a graph
of tensor operators, taking advantage of

• the chain rule (aka “back-propagation”),

• stochastic gradient decent,

• convolutions,

• parallel operations on GPUs.

This does not differ much from networks from the 90s.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 17 / 18

This generalization allows to design complex networks of operators dealing with
images, sound, text, sequences, etc. and to train them end-to-end.

(Tran et al., 2020)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 18 / 18

The End

References

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):
193–202, April 1980.

D. Gershgorn. The data that transformed AI research—and possibly the world, July 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

D. O. Hebb. The organization of behavior: A neuropsychological theory. Wiley, 1949.
ISBN 0-8058-4300-0.

D. Hubel and T. Wiesel. Receptive fields, binocular interaction, and functional
architecture in the cat’s visual cortex. Journal of Physiology, 160:106–154, 1962.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep
convolutional neural networks. In Neural Information Processing Systems (NIPS),
2012.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations of
Research, chapter Learning Representations by Back-propagating Errors, pages 696–699.
MIT Press, 1988.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

A. Tran, A. Mathews, and L. Xie. Transform and tell: Entity-aware news image
captioning. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
13035–13045, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In Proceedings of
the 10th IFIP Conference, pages 762–770, 1981.

	From artificial neural networks to ``Deep Learning''
	References

