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A popular approach to learn high-dimension densities are the Generative
Adversarial Networks proposed by Goodfellow et al. (2014), where two
networks are trained jointly:

• A discriminator D to classify samples as “real” or “fake”,

• a generator G to map a [simple] fixed distribution to samples that fool D.
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The approach is adversarial since the two networks have antagonistic objectives.
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Let 𝒳 be the signal space, and D the latent space dimension.

• The generator
G : RD → 𝒳

is trained so that [ideally] if it gets a random normal-distributed Z as input,
it produces a sample following the data distribution as output.

• The discriminator
D : 𝒳 → [0, 1]

is trained so that if it gets a sample as input, it predicts if it comes from G
or from the real data.
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Given a set of “real points”

xn ∼ µ, n = 1, . . . ,N,

and if G is fixed, we can train D by generating

zn ∼ 𝒩 (0, I ), n = 1, . . . ,N,

building a two-class data-set

𝒟 =
{
(x1, 1), . . . , (xN , 1)︸ ︷︷ ︸

real samples∼µ

, (G(z1), 0), . . . , (G(zN), 0)︸ ︷︷ ︸
fake samples∼µG

}
,

where µ is the true data distribution, and µG is the distribution of G(Z) with
Z ∼ 𝒩 (0, I )

, and minimizing the binary cross-entropy

ℒ (D) = −
1

2N

(
N∑

n=1

logD(xn) +
N∑

n=1

log(1−D(G(zn)))

)

= −
1

2

(
ÊX∼µ

[
logD(X )

]
+ ÊX∼µG

[
log(1−D(X ))

])
.
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The situation is slightly more complicated since we also want to optimize G to
maximize D’s loss.

Goodfellow et al. (2014) provide an analysis of the resulting equilibrium of that
strategy.
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Let’s define the loss of G

ℒG(D,G) = EX∼µ

[
logD(X )

]
+ EX∼µG

[
log(1−D(X ))

]
which is high if D is doing a good job (low cross entropy), and low if G fools D.

Our ultimate goal is a G∗ that fools any D, so

G∗ = argmin
G

max
D

ℒG(D,G).
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If we define the optimal discriminator for a given generator

D∗
G = argmax

D
ℒG(D,G),

our objective becomes

G∗ = argmin
G

ℒG(D
∗
G,G),

that is:

Find a G whose loss against its best adversary D∗
G is low.
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We have

ℒG(D,G) = EX∼µ

[
logD(X )

]
+ EX∼µG

[
log(1−D(X ))

]
=

∫
x
µ(x) logD(x) + µG(x) log(1−D(x))dx .

Since

argmax
d

µ(x) log d + µG(x) log(1− d) =
µ(x)

µ(x) + µG(x)
,

and
D∗

G = argmax
D

ℒG(D,G),

if there is no regularization on D, we get

∀x , D∗
G(x) =

µ(x)

µ(x) + µG(x)
.
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So, since

∀x , D∗
G(x) =

µ(x)

µ(x) + µG(x)
.

we get

ℒG(D
∗
G,G) = EX∼µ

[
logD∗

G(X )
]
+ EX∼µG

[
log(1−D∗

G(X ))
]

= EX∼µ

[
log

µ(X )

µ(X ) + µG(X )

]
+ EX∼µG

[
log

µG(X )

µ(X ) + µG(X )

]
= DKL

(
µ

∥∥∥∥ µ+ µG

2

)
+DKL

(
µG

∥∥∥∥ µ+ µG

2

)
− log 4

= 2DJS (µ, µG)− log 4

where DJS is the Jensen-Shannon Divergence, a standard similarity measure
between distributions.
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To recap: if there is no capacity limitation for D, and if we define

ℒG(D,G) = EX∼µ

[
logD(X )

]
+ EX∼µG

[
log(1−D(X ))

]
,

computing
G∗ = argmin

G
max
D

ℒG(D,G)

amounts to compute
G∗ = argmin

G
DJS(µ, µG),

where DJS is a reasonable similarity measure between distributions.

!
Although this derivation provides a nice formal framework, in practice D
is not “fully” optimized to [come close to] D∗

G when optimizing G.

In the toy example that follows, we alternate gradient steps to improve G and D.
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For our example, we take D = 8, and 𝒳 = R2.

z_dim = 8
nb_hidden = 100

model_G = nn.Sequential(nn.Linear(z_dim, nb_hidden),
nn.ReLU(),
nn.Linear(nb_hidden, 2))

model_D = nn.Sequential(nn.Linear(2, nb_hidden),
nn.ReLU(),
nn.Linear(nb_hidden, 1),
nn.Sigmoid())
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batch_size, lr = 10, 1e-3

optimizer_G = optim.Adam(model_G.parameters(), lr = lr)
optimizer_D = optim.Adam(model_D.parameters(), lr = lr)

for e in range(nb_epochs):

for t, real_batch in enumerate(real_samples.split(batch_size)):
z = real_batch.new(real_batch.size(0), z_dim).normal_()
fake_batch = model_G(z)

D_scores_on_real = model_D(real_batch)
D_scores_on_fake = model_D(fake_batch)

if t%2 == 0:
loss = (1 - D_scores_on_fake).log().mean()
optimizer_G.zero_grad()
loss.backward()
optimizer_G.step()

else:
loss = - (1 - D_scores_on_fake).log().mean() \

- D_scores_on_real.log().mean()
optimizer_D.zero_grad()
loss.backward()
optimizer_D.step()
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In more realistic settings, the fake samples may be initially so “unrealistic” that
the response of D saturates. That causes the loss for G

ÊX∼µG

[
log(1−D(X ))

]
to be far in the exponential tail of D’s sigmoid, and have zero gradient since
log(1 + ϵ) ≃ ϵ does not correct it in any way.

Goodfellow et al. suggest to replace this term with a non-saturating cost

−ÊX∼µG

[
log(D(X ))

]
so that the log fixes D’s exponential behavior. The resulting optimization
problem has the same optima as the original one.

! The loss for D remains unchanged.
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Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50
Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different σ chosen using the validation set of
each fold. On TFD, σ was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

6

(Goodfellow et al., 2014)
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Deep Convolutional GAN
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“We also encountered difficulties attempting to scale GANs using CNN
architectures commonly used in the supervised literature. However, after
extensive model exploration we identified a family of architectures that
resulted in stable training across a range of datasets and allowed for training
higher resolution and deeper generative models.”

(Radford et al., 2015)
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Radford et al. converged to the following rules:

• Replace pooling layers with strided convolutions in D and strided
transposed convolutions in G,

• use batchnorm in both D and G,

• remove fully connected hidden layers,

• use ReLU in G except for the output, which uses Tanh,

• use LeakyReLU activation in D for all layers.
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Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 × 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

(Radford et al., 2015)

We can have a look at the reference implementation provided in

https://github.com/pytorch/examples.git
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# default nz = 100, ngf = 64

class Generator(nn.Module):
def __init__(self, ngpu):

super().__init__()
self.ngpu = ngpu
self.main = nn.Sequential(

# input is Z, going into a convolution
nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64

)
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# default nz = 100, ndf = 64

class Discriminator(nn.Module):
def __init__(self, ngpu):

super().__init__()
self.ngpu = ngpu
self.main = nn.Sequential(

# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()

)
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# custom weights initialization called on netG and netD
def weights_init(m):

classname = m.__class__.__name__
if classname.find('Conv') != -1:

m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:

m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)

criterion = nn.BCELoss()

fixed_noise = torch.randn(opt.batchSize, nz, 1, 1, device=device)
real_label = 1
fake_label = 0

# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
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############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real
netD.zero_grad()
real_cpu = data[0].to(device)
batch_size = real_cpu.size(0)
label = torch.full((batch_size,), real_label, device=device)

output = netD(real_cpu)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()

# train with fake
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
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############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.fill_(real_label) # fake labels are real for generator cost
output = netD(fake)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()

Note that this update implements the − log(D(G(z))) trick.
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Real images from LSUN’s “bedroom” class.
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Fake images after 1 epoch (3M images)
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Fake images after 2 epochs
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Fake images after 5 epochs
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Fake images after 10 epochs
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Fake images after 20 epochs
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Training a standard GAN often results in two pathological behaviors:

• Oscillations without convergence. Contrary to standard loss minimization,
we have no guarantee here that it will actually decrease.

• The infamous “mode collapse”, when G models very well a small
sub-population, concentrating on a few modes.

Additionally, performance is hard to assess. Two standard measures are the
Inception Score (Salimans et al., 2016) and the Fréchet Inception
Distance (Heusel et al., 2017), but assessment is often a “beauty contest”.
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(Brock et al., 2018)
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(Brock et al., 2018)

François Fleuret Deep learning / 11.1. Generative Adversarial Networks 32 / 33



(Karras et al., 2018)
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The End
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