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Coming back to generating a signal, instead of training an autoencoder and
modeling the distribution of Z , we can try an alternative approach:

Impose a distribution for Z and then train a decoder g so that g(Z) matches
the training data.

This can be done with a Variational Autoencoder (Kingma and Welling, 2013).
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We want to train a model p(X = x | Z = z;w) such that, with p(Z = z) fixed,
for instance to 𝒩 (0, I ), the marginal

p(X = x ;w) =

∫
p(X = x | Z = z;w)p(Z = z)dz

match the training data, hence maximizes∑
n

log p(X = xn;w).

This value is sometimes referred to as the (log of the) model evidence.
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The model for p(X = x | Z = z) plays the role of a decoder: Given the latent
representation z, it estimates the signal x .

A form that echoes Gaussian mixture models, is to take

p(X | Z = z;w) = 𝒩 (µg (z;w), diag(σg (z;w))).

where µg and σg are of same shape as X and are computed by a deep model g .
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The key technical issue is that there is no tractable form for the marginalized
quantity p(X = x ;w).

What we can do is to estimate it by sampling. Indeed, with any distribution
q(Z), we have

p(X = x) =

∫
p(X = x ,Z = z;w)dz

=

∫
p(X = x ,Z = z;w)

q(Z = z)
q(Z = z)dz

= Ez∼q(Z)

[
p(X = x ,Z = z;w)

q(Z = z)

]
.

Hence, if we sample one z ∼ q(Z), the quantity

p(X = x ,Z = z;w)

q(Z = z)

is an unbiased estimator of p(X = x ;w).
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However we want to maximize the fit to the training set, which corresponds to
maximizing the likelihood of the training data∑

n

log p(X = xn).

Due to the convexity of the log, the log of our unbiased estimator of
p(X = x ;w) is not an unbiased estimator of log p(X = x ;w).
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We can look at that more precisely:

Ez∼q(Z)

[
log

p(X = x ,Z = z;w)

q(Z = z)

]
= Ez∼q(Z)

[
log

p(Z = z | X = x ;w)p(X = x ;w)

q(Z = z)

]
= log p(X = x ;w) + Ez∼q(Z)

[
log

p(Z = z | X = x ;w)

q(Z = z)

]
= log p(X = x ;w)−DKL (q(Z) ∥ p(Z | X = x ;w)) .

Where

DKL(a ∥ b) =
∫

a(u) log
a(u)

b(u)
du = −

∫
a(u) log

b(u)

a(u)
du

is the Kullback-Leibler divergence.

This quantity is non-negative, hence the expectation of the log of our estimator
is a lower bound of log p(X = x ;w), called the Evidence Lower Bound (ELBO).
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Hence, to have the model fit the data when we optimize the ELBO, we need a
q(Z) that makes DKL (q(Z) ∥ p(Z | X = x ;w)) as small as possible.

All the derivations remain valid if q is a function of X . The quantity we want to
maximize is then

log p(X = x ;w)−DKL

(
q(Z | X = x ;w ′) ∥ p(Z | X = x ;w)

)
and maximizing it will both maximize log p(X = x ;w), and minimize the KL
term, hence will bring q(Z | X = x ;w ′) close to p(Z | X = x ;w).

The role of q(Z | X = x ;w ′) is very similar to that of an encoder: Given the
signal x , it estimates what z are consistent with the decoding.

We can again use a Gaussian whose parameters are computed by a deep model f

q(Z | X = x ;w ′) ∼ 𝒩 (µf (x ;w ′), diag(σf (x ;w ′))).
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One last technical point is that we can rewrite the ELBO as

Ez∼q(Z |X=x ;w′)

[
log

p(X = x ,Z = z;w)

q(Z = z | X = x ;w ′)

]
= Ez∼q(Z |X=x ;w′)

[
log

p(X = x | Z = z;w)p(Z = z)

q(Z = z | X = x ;w ′)

]
= Ez∼q(Z |X=x ;w′)

[
log p(X = x | Z = z;w)− log

q(Z = z | X = x ;w ′)

p(Z = z)

]
= Ez∼q(Z |X=x ;w′)

[
log p(X = x | Z = z;w)

]
−DKL

(
q(Z | X = x ;w ′) ∥ p(Z)

)
.

This form allows to take advantage of the closed-form expression of the KL
divergence between Gaussians to get a less noisy estimate:

DKL (𝒩 (µ1,Σ1),𝒩 (µ2,Σ2))

=
1

2

[
log

|Σ1|
|Σ2|

− D + (µ1 − µ2)
⊤
Σ−1

2 (µ1 − µ2) + Tr
(
Σ−1

2 Σ1

)]
.
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So the final loss is

ℒ (w ,w ′) =
1

N

∑
n

DKL

(
q(Z | X = xn;w

′) ∥ p(Z)
)
−log p(X = xn | Z = zn;w)

where ∀n, zn ∼ q(Z | X = xn;w ′).
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Minimizing the first term

DKL

(
q(Z | X = xn;w

′) ∥ p(Z)
)

brings q(Z | X = xn;w ′) close to p(Z) = 𝒩 (0, I ).

Original space 𝒳

Latent space ℱ

f
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Minimizing the second term for a zn ∼ q(Z | X = xn;w ′)

− log p(X = xn | Z = zn;w)

maximizes the likelihood of the original data point xn under p(X | Z = zn;w).

Original space 𝒳

Latent space ℱ

f

g
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The assumption of independence between the component of P(X | Z = z)
allows the model to overfit the variance and additionally leads to grainy samples.

We fix this by forcing a variance of 1 during training and 0 during sampling.
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class VariationalAutoEncoder(nn.Module):
def __init__(self, nb_channels, latent_dim):

super().__init__()

self.encoder = nn.Sequential(
nn.Conv2d(1, nb_channels, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, nb_channels, kernel_size=5),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, nb_channels, kernel_size=5),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, nb_channels, kernel_size=4, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, nb_channels, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, 2 * latent_dim, kernel_size=4),

)

self.decoder = nn.Sequential(
nn.ConvTranspose2d(latent_dim, nb_channels, kernel_size=4),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nb_channels, nb_channels, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nb_channels, nb_channels, kernel_size=4, stride=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nb_channels, nb_channels, kernel_size=5),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nb_channels, 1, kernel_size=5),

)
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def encode(self, x):
output = self.encoder(x).view(x.size(0), 2, -1)
mu, log_var = output[:, 0], output[:, 1]
return mu, log_var

def decode(self, z):
mu = self.decoder(z.view(z.size(0), -1, 1, 1))
return mu, mu.new_zeros(mu.size())
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def sample_gaussian(param):
mean, log_var = param
std = log_var.mul(0.5).exp()
return torch.randn(mean.size(), device=mean.device) * std + mean

def log_p_gaussian(x, param):
mean, log_var, x = param[0].flatten(1), param[1].flatten(1), x.flatten(1)
var = log_var.exp()
return -0.5 * (((x - mean).pow(2) / var) + log_var + math.log(2 * math.pi)).sum(1)

def dkl_gaussians(param_a, param_b):
mean_a, log_var_a = param_a[0].flatten(1), param_a[1].flatten(1)
mean_b, log_var_b = param_b[0].flatten(1), param_b[1].flatten(1)
var_a = log_var_a.exp()
var_b = log_var_b.exp()
return 0.5 * (

log_var_b - log_var_a - 1 + (mean_a - mean_b).pow(2) / var_b + var_a / var_b
).sum(1)
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Note in particular the re-parameterization trick:

def sample_gaussian(param):
mean, log_var = param
std = log_var.mul(0.5).exp()
return torch.randn(mean.size(), device=mean.device) * std + mean

Implementing the sampling of z that way allows to compute the gradient w.r.t
the density’s parameters without any particular property of randn().
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for x in train_input.split(args.batch_size):
param_q_Z_given_x = model.encode(x)
z = sample_gaussian(param_q_Z_given_x)
param_p_X_given_z = model.decode(z)
log_p_x_given_z = log_p_gaussian(x, param_p_X_given_z)

dkl_q_Z_given_x_from_p_Z = dkl_gaussians(param_q_Z_given_x, param_p_Z)
loss = -(log_p_x_given_z - dkl_q_Z_given_x_from_p_Z).mean()

optimizer.zero_grad()
loss.backward()
optimizer.step()
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parser.add_argument("--nb_epochs", type=int, default=25)

parser.add_argument("--learning_rate", type=float, default=1e-3)

parser.add_argument("--batch_size", type=int, default=100)

parser.add_argument("--latent_dim", type=int, default=32)

parser.add_argument("--nb_channels", type=int, default=32)
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Original

Autoencoder reconstruction (d = 32)

Variational Autoencoder reconstruction (d = 32)
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We can look at two latent features to check that they are Normal for the VAE.

Autoencoder

−10 −5 0 5 10

−10

−5

0

5

10

Variational autoencoder 𝒩 (0, 1)

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

François Fleuret Deep learning / 7.4. Variational Autoencoder 20 / 24



We can look at two latent features to check that they are Normal for the VAE.

Autoencoder

−10 −5 0 5 10

−10

−5

0

5

10

Variational autoencoder 𝒩 (0, 1)

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

François Fleuret Deep learning / 7.4. Variational Autoencoder 20 / 24



Autoencoder sampling (d = 32)

Variational Autoencoder sampling (d = 32)
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Making the embedding ∼ 𝒩 (0, 1), often results in “disentangled”
representations.

This effect can be reinforced with a greater weight of the KL term

1

N

∑
n

βDKL

(
q(Z | X = xn;w

′) ∥ p(Z)
)
− log p(X = xn | Z = zn;w)

resulting in the β-VAE proposed by Higgins et al. (2017).
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Figure 2: Manipulating latent variables on 3D chairs: Qualitative results comparing disentangling
performance of β-VAE (β = 5), VAE (Kingma & Welling, 2014) (β = 1), InfoGAN (Chen et al.,
2016) and DC-IGN (Kulkarni et al., 2015). InfoGAN traversal is over the [-1, 1] range. VAE always
learns an entangled representation (e.g. chair width is entangled with azimuth and leg style (b)).
All models apart from VAE learnt to disentangle the labelled data generative factor, azimuth (a).
InfoGAN and β-VAE were also able to discover unlabelled factors in the dataset, such as chair width
(b). Only β-VAE, however, learnt about the unlabelled factor of chair leg style (c). InfoGAN and
DC-IGN images adapted from Chen et al. (2016) and Kulkarni et al. (2015), respectively. Reprinted
with permission.

In this paper we attempt to address these issues. We propose β-VAE, a deep unsupervised generative
approach for disentangled factor learning that can automatically discover the independent latent
factors of variation in unsupervised data. Our approach is based on the variational autoencoder (VAE)
framework (Kingma & Welling, 2014; Rezende et al., 2014), which brings scalability and training
stability. While the original VAE work has been shown to achieve limited disentangling performance
on simple datasets, such as FreyFaces or MNIST (Kingma & Welling, 2014), disentangling perfor-
mance does not scale to more complex datasets (e.g. Aubry et al., 2014; Paysan et al., 2009; Liu et al.,
2015), prompting the development of more elaborate semi-supervised VAE-based approaches for
learning disentangled factors (e.g. Kulkarni et al., 2015; Karaletsos et al., 2016).

We propose augmenting the original VAE framework with a single hyperparameter β that modulates
the learning constraints applied to the model. These constraints impose a limit on the capacity of
the latent information channel and control the emphasis on learning statistically independent latent
factors. β-VAE with β = 1 corresponds to the original VAE framework (Kingma & Welling, 2014;
Rezende et al., 2014). With β > 1 the model is pushed to learn a more efficient latent representation
of the data, which is disentangled if the data contains at least some underlying factors of variation
that are independent. We show that this simple modification allows β-VAE to significantly improve
the degree of disentanglement in learnt latent representations compared to the unmodified VAE
framework (Kingma & Welling, 2014; Rezende et al., 2014). Furthermore, we show that β-VAE
achieves state of the art disentangling performance against both the best unsupervised (InfoGAN:
Chen et al., 2016) and semi-supervised (DC-IGN: Kulkarni et al., 2015) approaches for disentangled
factor learning on a number of benchmark datasets, such as CelebA (Liu et al., 2015), chairs (Aubry
et al., 2014) and faces (Paysan et al., 2009) using qualitative evaluation. Finally, to help quantify
the differences, we develop a new measure of disentanglement and show that β-VAE significantly
outperforms all our baselines on this measure (ICA, PCA, VAE Kingma & Ba (2014), DC-IGN
Kulkarni et al. (2015), and InfoGAN Chen et al. (2016)).

Our main contributions are the following: 1) we propose β-VAE, a new unsupervised approach for
learning disentangled representations of independent visual data generative factors; 2) we devise a
protocol to quantitatively compare the degree of disentanglement learnt by different models; 3) we
demonstrate both qualitatively and quantitatively that our β-VAE approach achieves state-of-the-art
disentanglement performance compared to various baselines on a variety of complex datasets.
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(b). Only β-VAE, however, learnt about the unlabelled factor of chair leg style (c). InfoGAN and
DC-IGN images adapted from Chen et al. (2016) and Kulkarni et al. (2015), respectively. Reprinted
with permission.

In this paper we attempt to address these issues. We propose β-VAE, a deep unsupervised generative
approach for disentangled factor learning that can automatically discover the independent latent
factors of variation in unsupervised data. Our approach is based on the variational autoencoder (VAE)
framework (Kingma & Welling, 2014; Rezende et al., 2014), which brings scalability and training
stability. While the original VAE work has been shown to achieve limited disentangling performance
on simple datasets, such as FreyFaces or MNIST (Kingma & Welling, 2014), disentangling perfor-
mance does not scale to more complex datasets (e.g. Aubry et al., 2014; Paysan et al., 2009; Liu et al.,
2015), prompting the development of more elaborate semi-supervised VAE-based approaches for
learning disentangled factors (e.g. Kulkarni et al., 2015; Karaletsos et al., 2016).

We propose augmenting the original VAE framework with a single hyperparameter β that modulates
the learning constraints applied to the model. These constraints impose a limit on the capacity of
the latent information channel and control the emphasis on learning statistically independent latent
factors. β-VAE with β = 1 corresponds to the original VAE framework (Kingma & Welling, 2014;
Rezende et al., 2014). With β > 1 the model is pushed to learn a more efficient latent representation
of the data, which is disentangled if the data contains at least some underlying factors of variation
that are independent. We show that this simple modification allows β-VAE to significantly improve
the degree of disentanglement in learnt latent representations compared to the unmodified VAE
framework (Kingma & Welling, 2014; Rezende et al., 2014). Furthermore, we show that β-VAE
achieves state of the art disentangling performance against both the best unsupervised (InfoGAN:
Chen et al., 2016) and semi-supervised (DC-IGN: Kulkarni et al., 2015) approaches for disentangled
factor learning on a number of benchmark datasets, such as CelebA (Liu et al., 2015), chairs (Aubry
et al., 2014) and faces (Paysan et al., 2009) using qualitative evaluation. Finally, to help quantify
the differences, we develop a new measure of disentanglement and show that β-VAE significantly
outperforms all our baselines on this measure (ICA, PCA, VAE Kingma & Ba (2014), DC-IGN
Kulkarni et al. (2015), and InfoGAN Chen et al. (2016)).

Our main contributions are the following: 1) we propose β-VAE, a new unsupervised approach for
learning disentangled representations of independent visual data generative factors; 2) we devise a
protocol to quantitatively compare the degree of disentanglement learnt by different models; 3) we
demonstrate both qualitatively and quantitatively that our β-VAE approach achieves state-of-the-art
disentanglement performance compared to various baselines on a variety of complex datasets.
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Figure 1: Manipulating latent variables on celebA: Qualitative results comparing disentangling
performance of β-VAE (β = 250), VAE (Kingma & Welling, 2014) (β = 1) and InfoGAN (Chen
et al., 2016). In all figures of latent code traversal each block corresponds to the traversal of a single
latent variable while keeping others fixed to either their inferred (β-VAE, VAE and DC-IGN where
applicable) or sampled (InfoGAN) values. Each row represents a different seed image used to infer
the latent values in the VAE-based models, or a random sample of the noise variables in InfoGAN.
β-VAE and VAE traversal is over the [-3, 3] range. InfoGAN traversal is over ten dimensional
categorical latent variables. Only β-VAE and InfoGAN learnt to disentangle factors like azimuth
(a), emotion (b) and hair style (c), whereas VAE learnt an entangled representation (e.g. azimuth is
entangled with emotion, presence of glasses and gender). InfoGAN images adapted from Chen et al.
(2016). Reprinted with permission.

approaches to disentangled factor learning have not scaled well (Schmidhuber, 1992; Desjardins
et al., 2012; Tang et al., 2013; Cohen & Welling, 2014; 2015).

Recently a scalable unsupervised approach for disentangled factor learning has been developed,
called InfoGAN (Chen et al., 2016). InfoGAN extends the generative adversarial network (GAN)
(Goodfellow et al., 2014) framework to additionally maximise the mutual information between a
subset of the generating noise variables and the output of a recognition network. It has been reported
to be capable of discovering at least a subset of data generative factors and of learning a disentangled
representation of these factors. The reliance of InfoGAN on the GAN framework, however, comes
at the cost of training instability and reduced sample diversity. Furthermore, InfoGAN requires
some a priori knowledge of the data, since its performance is sensitive to the choice of the prior
distribution and the number of the regularised noise variables. InfoGAN also lacks a principled
inference network (although the recognition network can be used as one). The ability to infer the
posterior latent distribution from sensory input is important when using the unsupervised model in
transfer learning or zero-shot inference scenarios. Hence, while InfoGAN is an important step in the
right direction, we believe that further improvements are necessary to achieve a principled way of
using unsupervised learning for developing more human-like learning and reasoning in algorithms as
described by Lake et al. (2016).

Finally, there is currently no general method for quantifying the degree of learnt disentanglement.
Therefore there is no way to quantitatively compare the degree of disentanglement achieved by
different models or when optimising the hyperparameters of a single model.
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