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We can generalize an MLP

x ×

w (1)

+

b(1)

σ ×

w (2)

+

b(2)

σ f (x)

to an arbitrary “Directed Acyclic Graph” (DAG) of operators
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If (a1, . . . , aQ) = φ(b1, . . . , bR), we use the notation

[
∂a

∂b

]
= Jφ =


∂a1

∂b1
. . . ∂a1

∂bR
...

. . .
...

∂aQ
∂b1

. . .
∂aQ
∂bR

 .

It does not specify at which point this is computed, but it will always be for the
forward-pass activations.

Also, if (a1, . . . , aQ) = φ(b1, . . . , bR , c1, . . . , cS ), we use

[
∂a

∂c

]
= Jφ|c =


∂a1

∂c1
. . . ∂a1

∂cS
...

. . .
...

∂aQ
∂c1

. . .
∂aQ
∂cS

 .
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Forward pass

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

x(0) = x

x(1) = φ(1)(x(0);w (1))

x(2) = φ(2)(x(0), x(1);w (2))

f (x) = x(3) = φ(3)(x(1), x(2);w (1))
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Backward pass, derivatives w.r.t activations

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

[
∂l

∂x(2)

]
=

[
∂x(3)

∂x(2)

][
∂l

∂x(3)

]
= Jφ(3)|x (2)

[
∂l

∂x(3)

]
[
∂l

∂x(1)

]
=

[
∂x(2)

∂x(1)

][
∂l

∂x(2)

]
+

[
∂x(3)

∂x(1)

] [
∂l

∂x(3)

]
= Jφ(2)|x (1)

[
∂l

∂x(2)

]
+ Jφ(3)|x (1)

[
∂l

∂x(3)

]
[
∂l

∂x(0)

]
=

[
∂x(1)

∂x(0)

][
∂l

∂x(1)

]
+

[
∂x(2)

∂x(0)

] [
∂l

∂x(2)

]
= Jφ(1)|x (0)

[
∂l

∂x(1)

]
+ Jφ(2)|x (0)

[
∂l

∂x(2)

]
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Backward pass, derivatives w.r.t parameters

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

[
∂l

∂w (1)

]
=

[
∂x(1)

∂w (1)

] [
∂l

∂x(1)

]
+

[
∂x(3)

∂w (1)

][
∂l

∂x(3)

]
= Jφ(1)|w (1)

[
∂l

∂x(1)

]
+ Jφ(3)|w (1)

[
∂l

∂x(3)

]
[
∂l

∂w (2)

]
=

[
∂x(2)

∂w (2)

] [
∂l

∂x(2)

]
= Jφ(2)|w (2)

[
∂l

∂x(2)

]
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So if we have a library of “tensor operators”, and implementations of

(x1, . . . , xd ,w) 7→ φ(x1, . . . , xd ;w)

∀c, (x1, . . . , xd ,w) 7→ Jφ|xc (x1, . . . , xd ;w)

(x1, . . . , xd ,w) 7→ Jφ|w (x1, . . . , xd ;w),

we can build an arbitrary directed acyclic graph with these operators at the
nodes, compute the response of the resulting mapping, and compute its
gradient with back-prop.
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Writing from scratch a large neural network is complex and error-prone.

Multiple frameworks provide libraries of tensor operators and mechanisms to
combine them into DAGs and automatically differentiate them.

Language(s) License Main backer

PyTorch Python BSD Facebook

Caffe2 C++, Python Apache Facebook

TensorFlow Python, C++ Apache Google

MXNet Python, C++, R, Scala Apache Amazon

CNTK Python, C++ MIT Microsoft

Torch Lua BSD Facebook

Theano Python BSD U. of Montreal

Caffe C++ BSD 2 clauses U. of CA, Berkeley

One approach is to define the nodes and edges of such a DAG statically (Torch,
TensorFlow, Caffe, Theano, etc.)
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In TensorFlow, to run a forward/backward pass on

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

φ(1)
(
x(0);w (1)

)
= w (1)x(0)

φ(2)
(
x(0), x(1);w (2)

)
= x(0) + w (2)x(1)

φ(3)
(
x(1), x(2);w (1)

)
= w (1)

(
x(1) + x(2)

)

w1 = tf.Variable(tf.random_normal([5, 5]))
w2 = tf.Variable(tf.random_normal([5, 5]))
x = tf.Variable(tf.random_normal([5, 1]))
x0 = x
x1 = tf.matmul(w1, x0)
x2 = x0 + tf.matmul(w2, x1)
x3 = tf.matmul(w1, x1 + x2)
q = tf.norm(x3)

gw1, gw2 = tf.gradients(q, [w1, w2])

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
_gw1, _gw2 = sess.run([gw1, gw2])
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Weight sharing
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In our generalized DAG formulation, we have in particular implicitly allowed the
same parameters to modulate different parts of the processing.

For instance w (1) in our example parametrizes both φ(1) and φ(3).

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

This is called weight sharing.
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Weight sharing allows in particular to build siamese networks where a full
sub-network is replicated several times.

x(0) = x

ψu × + σ u(1) × + σ u(2)

ψv × + σ v (1) × + σ v (2)

φ x(1)w (1) b(1) w (2) b(2)
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4.2. Autograd
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Conceptually, the forward pass is a standard tensor computation, and the DAG
of tensor operations is required only to compute derivatives.

When executing tensor operations, PyTorch can automatically construct
on-the-fly the graph of operations to compute the gradient of any quantity
with respect to any tensor involved.

This “autograd” mechanism (Paszke et al., 2017) has two main benefits:

• Simpler syntax: one just need to write the forward pass as a standard
sequence of Python operations,

• greater flexibility: since the graph is not static, the forward pass can be
dynamically modulated.

François Fleuret CAS – Deep learning / 4.2. Autograd 14 / 174

A Tensor has a Boolean field requires_grad, set to False by default, which
states if PyTorch should build the graph of operations so that gradients with
respect to it can be computed.

The result of a tensorial operation has this flag to True if any of its operand
has it to True.

>>> x = torch.tensor([ 1., 2. ])
>>> y = torch.tensor([ 4., 5. ])
>>> z = torch.tensor([ 7., 3. ])
>>> x.requires_grad
False
>>> (x + y).requires_grad
False
>>> z.requires_grad = True
>>> (x + z).requires_grad
True
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B Only floating point type tensors can have their gradient computed.

>>> x = torch.tensor([1., 10.])
>>> x.requires_grad = True
>>> x = torch.tensor([1, 10])
>>> x.requires_grad = True
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
RuntimeError: only Tensors of floating point dtype can require gradients

The method requires_grad_(value = True) set requires_grad to value,
which is True by default.
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torch.autograd.grad(outputs, inputs) computes and returns the gradient
of outputs with respect to inputs.

>>> t = torch.tensor([1., 2., 4.]).requires_grad_()
>>> u = torch.tensor([10., 20.]).requires_grad_()
>>> a = t.pow(2).sum() + u.log().sum()
>>> torch.autograd.grad(a, (t, u))
(tensor([2., 4., 8.]), tensor([0.1000, 0.0500]))

inputs can be a single tensor, but the result is still a [one element] tuple.

If outputs is a tuple, the result is the sum of the gradients of its elements.
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The function Tensor.backward() accumulates gradients in the grad fields of
tensors which are not results of operations, the “leaves” in the autograd graph.

>>> x = torch.tensor([ -3., 2., 5. ]).requires_grad_()
>>> u = x.pow(3).sum()
>>> x.grad
>>> u.backward()
>>> x.grad
tensor([27., 12., 75.])

This function is an alternative to torch.autograd.grad(...) and standard for
training models.
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B Tensor.backward() accumulates the gradients in the different Tensors,
so one may have to set them to zero before calling it.

This accumulating behavior is desirable in particular to compute the gradient of
a loss summed over several “mini-batches,” or the gradient of a sum of losses.
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So we can run a forward/backward pass on

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

φ(1)
(
x(0);w (1)

)
= w (1)x(0)

φ(2)
(
x(0), x(1);w (2)

)
= x(0) + w (2)x(1)

φ(3)
(
x(1), x(2);w (1)

)
= w (1)

(
x(1) + x(2)

)

w1 = torch.rand(5, 5).requires_grad_()
w2 = torch.rand(5, 5).requires_grad_()
x = torch.empty(5).normal_()

x0 = x
x1 = w1 @ x0
x2 = x0 + w2 @ x1
x3 = w1 @ (x1 + x2)

q = x3.norm()

q.backward()
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The autograd machinery
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The autograd graph is encoded through the fields grad_fn of Tensors, and the
fields next_functions of Functions.

>>> x = torch.tensor([ 1.0, -2.0, 3.0, -4.0 ]).requires_grad_()
>>> a = x.abs()
>>> s = a.sum()
>>> s
tensor(10., grad_fn=<SumBackward0>)
>>> s.grad_fn.next_functions
((<AbsBackward object at 0x7ffb2b1462b0>, 0),)
>>> s.grad_fn.next_functions[0][0].next_functions
((<AccumulateGrad object at 0x7ffb2b146278>, 0),)

We will come back to this later to write our own Functions.
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We can visualize the full graph built during a computation.

x = torch.tensor([1., 2., 2.]).requires_grad_()
q = x.norm()

q []

NormBackward0

AccumulateGrad

x [3]

This graph was generated with

https://fleuret.org/git/agtree2dot

and Graphviz.
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w1 = torch.rand(20, 10).requires_grad_()
b1 = torch.rand(20).requires_grad_()
w2 = torch.rand(5, 20).requires_grad_()
b2 = torch.rand(5).requires_grad_()

x = torch.rand(10)
h = torch.tanh(w1 @ x + b1)
y = torch.tanh(w2 @ h + b2)

target = torch.rand(5)

loss = (y - target).pow(2).mean()

loss []

MeanBackward1

PowBackward0

ThSubBackward

TanhBackward

ThAddBackward

0 1

MvBackward

0 1
AccumulateGrad

AccumulateGrad TanhBackward

w2 [5, 20]
ThAddBackward

0 1

MvBackward AccumulateGrad

AccumulateGrad

w1 [20, 10]

b1 [20]

b2 [5]
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w = torch.rand(3, 10, 10).requires_grad_()

def blah(k, x):
for i in range(k):

x = torch.tanh(w[i] @ x)
return x

u = blah(1, torch.rand(10))
v = blah(3, torch.rand(10))
q = u.dot(v)

q []

DotBackward

0 1

TanhBackward TanhBackward

MvBackward

SelectBackward

AccumulateGrad

w [3, 10, 10]

MvBackward

0 1

SelectBackward

TanhBackward

MvBackward

0 1

SelectBackward

TanhBackward

MvBackward

SelectBackward
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B
Although they are related, the autograd graph is not the network’s
structure, but the graph of operations to compute the gradient. It can
be data-dependent and miss or replicate sub-parts of the network.
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The torch.no_grad() context switches off the autograd machinery, and can be
used for operations such as parameter updates.

w = torch.empty(10, 784).normal_(0, 1e-3).requires_grad_()
b = torch.empty(10).normal_(0, 1e-3).requires_grad_()

for k in range(10001):
y_hat = x @ w.t() + b
loss = (y_hat - y).pow(2).mean()

w.grad, b.grad = None, None
loss.backward()

with torch.no_grad():
w -= eta * w.grad
b -= eta * b.grad
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The detach() method creates a tensor which shares the data, but does not
require gradient computation, and is not connected to the current graph.

This method should be used when the gradient should not be propagated
beyond a variable, or to update leaf tensors.

François Fleuret CAS – Deep learning / 4.2. Autograd 28 / 174

a = torch.tensor( 0.5).requires_grad_()
b = torch.tensor(-0.5).requires_grad_()

for k in range(100):
l = (a - 1)**2 + (b + 1)**2 + (a - b)**2
ga, gb = torch.autograd.grad(l, (a, b))
with torch.no_grad():

a -= eta * ga
b -= eta * gb

print(’%.06f’ % a.item(), ’%.06f’ % b.item())

prints

0.333333 -0.333333
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a = torch.tensor( 0.5).requires_grad_()
b = torch.tensor(-0.5).requires_grad_()

for k in range(100):
l = (a - 1)**2 + (b + 1)**2 + (a.detach() - b)**2
ga, gb = torch.autograd.grad(l, (a, b))
with torch.no_grad():

a -= eta * ga
b -= eta * gb

print(’%.06f’ % a.item(), ’%.06f’ % b.item())

prints

1.000000 -0.000000
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Autograd can also track the computation of the gradient itself, to allows
higher-order derivatives. This is specified with create_graph = True:

>>> x = torch.tensor([ 1., 2., 3. ]).requires_grad_()
>>> phi = x.pow(2).sum()
>>> g1, = torch.autograd.grad(phi, x, create_graph = True)
>>> g1
tensor([2., 4., 6.], grad_fn=<ThMulBackward>)
>>> psi = g1[0].exp() - g1[2].exp()
>>> g2, = torch.autograd.grad(psi, x)
>>> g2
tensor([ 14.7781, 0.0000, -806.8576])

François Fleuret CAS – Deep learning / 4.2. Autograd 31 / 174



B In-place operations may corrupt values required to compute the gradient,
and this is tracked down by autograd.

>>> x = torch.tensor([1., 2., 3.]).requires_grad_()
>>> y = x.sin()
>>> l = y.sum()
>>> l.backward()
>>> y = x.sin()
>>> y += 1
>>> l = y.sum()
>>> l.backward()
>>> y = x.sin()
>>> y *= y
>>> l = y.sum()
>>> l.backward()
Traceback (most recent call last):
/.../
RuntimeError: one of the variables needed for gradient computation has
been modified by an inplace operation

They are also prohibited on so-called “leaf” tensors, which are not the results of
operations but the initial inputs to the whole computation.
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4.3. PyTorch modules and batch processing
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Elements from torch.nn.functional are autograd-compliant functions which
compute a result from provided arguments alone. This is usually imported as F.

Subclasses of torch.nn.Module are losses and network components. The latter
embed parameters to be optimized during training.

Parameters are of the type torch.nn.Parameter which is a Tensor with
requires_grad to True, and known to be a model parameter by various utility
functions, in particular torch.nn.Module.parameters().
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B
Functions and modules from torch.nn process batches of inputs stored
in a tensor whose first dimension indexes them, and produce a corre-
sponding tensor with the same additional dimension.

E.g. a fully connected layer RC → RD expects as input a tensor of size N × C
and computes a tensor of size N × D, where N is the number of samples and
can vary from a call to another.
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torch.nn.functional.relu(input, inplace=False)

takes a tensor of any size as input, applies ReLU on each value to produce a
result tensor of same size.

>>> x
tensor([[ 0.8008, -0.2586, 0.5019, -0.2002, -0.7416],

[ 0.0557, 0.6046, 0.0864, -0.5929, 1.2606]])
>>> F.relu(x)
tensor([[ 0.8008, 0.0000, 0.5019, 0.0000, 0.0000],

[ 0.0557, 0.6046, 0.0864, 0.0000, 1.2606]])

inplace indicates if the operation should modify the argument itself. This may
be desirable to reduce the memory footprint of the processing.
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The module

torch.nn.Linear(in_features, out_features, bias=True)

implements a RC → RD fully-connected layer. It takes as input a tensor of size
N × C and produce a tensor of size N × D.

>>> f = nn.Linear(in_features = 10, out_features = 4)
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([4, 10])
bias torch.Size([4])
>>> x = torch.empty(523, 10).normal_()
>>> y = f(x)
>>> y.size()
torch.Size([523, 4])

B The weights and biases are automatically randomized at creation. We
will come back to that later.
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The module

torch.nn.MSELoss()

implements the Mean Square Error loss: the sum of the component-wise
squared difference, divided by the total number of components in the tensors.

>>> f = torch.nn.MSELoss()
>>> x = torch.tensor([[ 3. ]])
>>> y = torch.tensor([[ 0. ]])
>>> f(x, y)
tensor(9.)
>>> x = torch.tensor([[ 3., 0., 0., 0. ]])
>>> y = torch.tensor([[ 0., 0., 0., 0. ]])
>>> f(x, y)
tensor(2.2500)

The first parameter of a loss is traditionally called the input and the second the
target. These two quantities may be of different dimensions or even types for
some losses (e.g. for classification).
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B Criteria do not accept a tensor with requires_grad to True for target.

>>> import torch
>>> f = torch.nn.MSELoss()
>>> x = torch.tensor([ 3., 2. ]).requires_grad_()
>>> y = torch.tensor([ 0., -2. ]).requires_grad_()
>>> f(x, y)
Traceback (most recent call last):
/.../
AssertionError: nn criterions don’t compute the gradient w.r.t.
targets - please mark these tensors as not requiring gradients
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Batch processing
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Functions and modules from torch.nn process samples by batches. This is
motivated by the computational speed-up it induces.

To evaluate a module on a sample, both the module’s parameters and the
sample have to be first copied into cache memory, which is fast but small.

For any model of reasonable size, only a fraction of its parameters can be kept
in cache, so a module’s parameters have to be copied there every time it is used.

These memory transfers are slower than the computation itself.

This is the main reason for batch processing: it cuts down to one per
module per batch the number of copies of parameters to the cache.

It also cuts down the use of Python loops, which are awfully slow.
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Consider a model composed of three modules

f = f3 ◦ f2 ◦ f1,

and we want to compute f (x1), f (x2), f (x3).

Copying the xns to cache memory

Copying the fd s’ parameters to cache memory

Computing a fd (xn)

Processing samples one by one:

Time

Batch processing:

Time
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With

def timing(x, w, batch = False, nb = 101):
t = torch.zeros(nb)

for u in range(0, t.size(0)):
t0 = time.perf_counter()
if batch:

y = x.mm(w.t())
else:

y = torch.empty(x.size(0), w.size(0))
for k in range(y.size(0)): y[k] = w.mv(x[k])

y.is_cuda and torch.cuda.synchronize()
t[u] = time.perf_counter() - t0

return t.median().item()
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x = torch.empty(2500, 1000).normal_()
w = torch.empty(1500, 1000).normal_()
print(’Batch-processing speed-up on CPU %.1f’ %

(timing(x, w, batch = False) / timing(x, w, batch = True)))

x, w = x.to(’cuda’), w.to(’cuda’)
print(’Batch-processing speed-up on GPU %.1f’ %

(timing(x, w, batch = False) / timing(x, w, batch = True)))

prints

Batch-processing speed-up on CPU 4.6
Batch-processing speed-up on GPU 144.4

François Fleuret CAS – Deep learning / 4.3. PyTorch modules and batch processing 44 / 174

Formally, we have to revisit a bit some expressions we saw previously for fully
connected layers. We had

∀l , n, w (l) ∈ Rdl×dl−1 , x
(l−1)
n ∈ Rdl−1 , s

(l)
n = w (l) x

(l−1)
n .

From now on, we will use row vectors, so that we can represent a series of
samples as a 2d array with the first index being the sample’s index.

x =

 x1,1 . . . x1,D

...
. . .

...
xN,1 . . . xN,D

 =


(x1)T

...

(xN)T

 ,

which is an element of RN×D .
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To make all sample row vectors and apply a linear operator, we want

∀n, s
(l)
n =

(
w (l)

(
x

(l−1)
n

)T)T

= x
(l−1)
n

(
w (l)

)T
which gives a tensorial expression for the full batch

s(l) = x(l−1)
(
w (l)

)T
.

And in torch/nn/functional.py

def linear(input, weight, bias=None):
if input.dim() == 2 and bias is not None:

# fused op is marginally faster
return torch.addmm(bias, input, weight.t())

output = input.matmul(weight.t())
if bias is not None:

output += bias
return output
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Similarly for the backward pass of a linear layer we get[[
∂ℒ

∂w (l)

]]
=

[[
∂ℒ

∂x(l)

]]T
x(l−1),

and [[
∂ℒ

∂x(l)

]]
=

[[
∂l

∂x(l+1)

]]
w (l+1).
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4.4. Convolutions
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If they were handled as normal “unstructured” vectors, large-dimension signals
such as sound samples or images would require models of intractable size.

For instance a linear layer taking a 256× 256 RGB image as input, and
producing an image of same size would require

(256× 256× 3)2 ' 3.87e+10

parameters, with the corresponding memory footprint ('150Gb !), and excess
of capacity.

François Fleuret CAS – Deep learning / 4.4. Convolutions 49 / 174



Moreover, this requirement is inconsistent with the intuition that such large
signals have some “invariance in translation”. A representation meaningful at
a certain location can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear
transformation locally, everywhere, and preserves the signal structure.
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Formally, in 1d, given
x = (x1, . . . , xW )

and a “convolution kernel” (or “filter”) of width w

u = (u1, . . . , uw )

the convolution x ~ u is a vector of size W − w + 1, with

(x ~ u)i =
w∑
j=1

xi−1+j uj

= (xi , . . . , xi+w−1) · u

for instance

(1, 2, 3, 4) ~ (3, 2) = (3 + 4, 6 + 6, 9 + 8) = (7, 12, 17).

B This differs from the usual convolution since the kernel and the signal
are both visited in increasing index order.
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Convolution can implement in particular differential operators, e.g.

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ~ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).

~ =

or crude “template matcher”, e.g.

~ =

Both of these computation examples are indeed “invariant by translation”.
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It generalizes naturally to a multi-dimensional input, although specification can
become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input
(i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped
across channels, just across rows and columns.

In this case, if the input tensor is of size C × H ×W , and the kernel is
C × h × w , the output is (H − h + 1)× (W − w + 1).

B We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate
a D × (H − h + 1)× (W − w + 1) output.

François Fleuret CAS – Deep learning / 4.4. Convolutions 54 / 174

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1

D

H

W

C

h

w

C

François Fleuret CAS – Deep learning / 4.4. Convolutions 55 / 174



Note that a convolution preserves the signal support structure.

A 1d signal is converted into a 1d signal, a 2d signal into a 2d, and neighboring
parts of the input signal influence neighboring parts of the output signal.

A 3d convolution can be used if the channel index has some metric meaning,
such as time for a series of grayscale video frames. Otherwise swiping across
channels makes no sense.
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We usually refer to one of the channels generated by a convolution layer as an
activation map.

The sub-area of an input map that influences a component of the output as the
receptive field of the latter.

In the context of convolutional networks, a standard linear layer is called a fully
connected layer since every input influences every output.
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torch.nn.functional.conv2d(input, weight, bias=None,
stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight contains the kernels, and is
D × C × h × w , bias is of dimension D, input is of dimension

N × C × H ×W

and the result is of dimension

N × D × (H − h + 1)× (W − w + 1).

>>> weight = torch.empty(5, 4, 2, 3).normal_()
>>> bias = torch.empty(5).normal_()
>>> input = torch.empty(117, 4, 10, 3).normal_()
>>> output = torch.nn.functional.conv2d(input, weight, bias)
>>> output.size()
torch.Size([117, 5, 9, 1])

Similar functions implement 1d and 3d convolutions.

François Fleuret CAS – Deep learning / 4.4. Convolutions 58 / 174

x = mnist_train.train_data[12].float().view(1, 1, 28, 28)

weight = torch.empty(5, 1, 3, 3)

weight[0, 0] = torch.tensor([ [ 0., 0., 0. ],
[ 0., 1., 0. ],
[ 0., 0., 0. ] ])

weight[1, 0] = torch.tensor([ [ 1., 1., 1. ],
[ 1., 1., 1. ],
[ 1., 1., 1. ] ])

weight[2, 0] = torch.tensor([ [ -1., 0., 1. ],
[ -1., 0., 1. ],
[ -1., 0., 1. ] ])

weight[3, 0] = torch.tensor([ [ -1., -1., -1. ],
[ 0., 0., 0. ],
[ 1., 1., 1. ] ])

weight[4, 0] = torch.tensor([ [ 0., -1., 0. ],
[ -1., 4., -1. ],
[ 0., -1., 0. ] ])

y = torch.nn.functional.conv2d(x, weight)
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class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter

properly randomized at creation.

The kernel size is either a pair (h,w) or a single value k interpreted as (k, k).

>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([5, 4, 2, 3])
bias torch.Size([5])
>>> x = torch.empty(117, 4, 10, 3).normal_()
>>> y = f(x)
>>> y.size()
torch.Size([117, 5, 9, 1])
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Padding and stride
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Convolutions have two additional standard parameters:

• The padding specifies the size of a zeroed frame added around the input,

• the stride specifies a step size when moving the kernel across the signal.
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Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3, the output is 1× 3× 3.
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B A convolution with a stride greater than 1 may not cover the input map
completely, hence may ignore some of the input values.
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Dilated convolution
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Convolution operations admit one more standard parameter that we have not
discussed yet: The dilation, which modulates the expansion of the filter
support (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting
operation can be envisioned as a convolution with a regularly sparsified filter.

This notion comes from signal processing, where it is referred to as algorithme à
trous, hence the term sometime used of “convolution à trous”.
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Output
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Input

Output

Dilation = 2
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A convolution with a 1d kernel of size k and dilation d can be interpreted as a
convolution with a filter of size 1 + (k − 1)d with only k non-zero coefficients.

For with k = 3 and d = 4, the difference between the input map size and the
output map size is 1 + (3− 1)4− 1 = 8.

>>> x = torch.empty(1, 1, 20, 30).normal_()
>>> l = nn.Conv2d(1, 1, kernel_size = 3, dilation = 4)
>>> l(x).size()
torch.Size([1, 1, 12, 22])
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Having a dilation greater than one increases the units’ receptive field size
without increasing the number of parameters.

Convolutions with stride or dilation strictly greater than one reduce the
activation map size, for instance to make a final classification decision.

Such networks have the advantage of simplicity:

• non-linear operations are only in the activation function,

• joint operations that combine multiple activations to produce one are only
in linear layers.
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4.5. Pooling
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The historical approach to compute a low-dimension signal (e.g. a few scores)
from a high-dimension one (e.g. an image) was to use pooling operations.

Such an operation aims at grouping several activations into a single “more
meaningful” one.
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The most standard type of pooling is the max-pooling, which computes max
values over non-overlapping blocks.

For instance in 1d with a kernel of size 2:
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The average pooling computes average values per block instead of max values.
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Pooling provides invariance to any permutation inside one of the cell.

More practically, it provides a pseudo-invariance to deformations that result into
local translations.

Input

Output
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torch.nn.functional.max_pool2d(input, kernel_size,
stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False)

takes as input a N × C × H ×W tensor, and a kernel size (h,w) or k
interpreted as (k, k), applies the max-pooling on each channel of each sample
separately, and produce if the padding is 0 a N × C × bH/hc × bW /wc output.

>>> x = torch.empty(2, 2, 6).random_(3)
>>> x
tensor([[[ 1., 2., 2., 1., 2., 1.],

[ 2., 0., 0., 0., 1., 0.]],

[[ 2., 0., 2., 1., 1., 1.],
[ 0., 0., 0., 1., 2., 1.]]])

>>> F.max_pool2d(x, (1, 2))
tensor([[[ 2., 2., 2.],

[ 2., 0., 1.]],

[[ 2., 2., 1.],
[ 0., 1., 2.]]])

Similar functions implements 1d and 3d max-pooling, and average pooling.
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As for convolution, pooling operations can be modulated through their stride
and padding.

While for convolution the default stride is 1, for pooling it is equal to the kernel
size, but this not obligatory.

Default padding is zero.
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class torch.nn.MaxPool2d(kernel_size, stride=None,
padding=0, dilation=1,
return_indices=False, ceil_mode=False)

Wraps the max-pooling operation into a Module.

As for convolutions, the kernel size is either a pair (h,w) or a single value k
interpreted as (k, k).
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4.6. Writing a PyTorch module
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We now have all the bricks needed to build our first convolutional network from
scratch. The last technical points is the tensor shape between layers.

Both the convolutional and pooling layers take as input batches of samples,
each one being itself a 3d tensor C × H ×W .

The output has the same structure, and tensors have to be explicitly reshaped
before being forwarded to a fully connected layer.

>>> from torchvision.datasets import MNIST
>>> mnist = MNIST(’./data/mnist/’, train = True, download = True)
>>> d = mnist.train_data
>>> d.size()
torch.Size([60000, 28, 28])
>>> x = d.view(d.size(0), 1, d.size(1), d.size(2))
>>> x.size()
torch.Size([60000, 1, 28, 28])
>>> x = x.view(x.size(0), -1)
>>> x.size()
torch.Size([60000, 784])
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A classical LeNet-like model could be:

Input sizes / operations Nb. parameters Nb. products

1×28×28

nn.Conv2d(1, 32, kernel_size=5) 32×(52 + 1) = 832 32×242×52 = 460,800

32×24×24

F.max_pool2d(., kernel_size=3) 0 0

32×8×8

F.relu(.) 0 0

32×8×8

nn.Conv2d(32, 64, kernel_size=5) 64×(32×52 + 1) = 51,264 32×64×42×52 = 819,200

64×4×4

F.max_pool2d(., kernel_size=2) 0 0

64×2×2

F.relu(.) 0 0

64×2×2

x.view(-1, 256) 0 0

256

nn.Linear(256, 200) 200×(256 + 1) = 51,400 200×256 = 51,200

200

F.relu(.) 0 0

200

nn.Linear(200, 10) 10×(200 + 1) = 2,010 10×200 = 2,000

10

Total 105,506 parameters and 1,333,200 products for the forward pass.
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Creating a module
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PyTorch offers a sequential container module torch.nn.Sequential to build
simple architectures.

For instance a MLP with a 10 dimension input, 2 dimension output, ReLU
activation function and two hidden layers of dimensions 100 and 50 can be
written as:

model = nn.Sequential(
nn.Linear(10, 100), nn.ReLU(),
nn.Linear(100, 50), nn.ReLU(),
nn.Linear(50, 2)

);

However for any model of practical complexity, the best is to write a sub-class
of torch.nn.Module.
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To create a Module, one has to inherit from the base class and implement the
constructor __init__(self, ...) and the forward pass forward(self, x).

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fc1 = nn.Linear(256, 200)
self.fc2 = nn.Linear(200, 10)

def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=3, stride=3))
x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=2, stride=2))
x = x.view(-1, 256)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
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Inheriting from torch.nn.Module provides many mechanisms implemented in
the superclass.

First, the (...) operator is redefined to call the forward(...) method and
run additional operations. The forward pass should be executed through this
operator and not by calling forward explicitly.

Using the class Net we just defined

model = Net()
input = torch.empty(12, 1, 28, 28).normal_()
output = model(input)
print(output.size())

prints

torch.Size([12, 10])
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Also, all Parameters added as class attributes are seen by
Module.parameters().

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fc1 = nn.Linear(256, 200)
self.fc2 = nn.Linear(200, 10)

/.../

model = Net()

for k in model.parameters():
print(k.size())

prints

torch.Size([32, 1, 5, 5])
torch.Size([32])
torch.Size([64, 32, 5, 5])
torch.Size([64])
torch.Size([200, 256])
torch.Size([200])
torch.Size([10, 200])
torch.Size([10])
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B Parameters added in dictionaries or arrays are not seen.

class Buggy(nn.Module):
def __init__(self):

super(Buggy, self).__init__()
self.conv = nn.Conv2d(1, 32, kernel_size=5)
self.param = Parameter(torch.zeros(123, 456))
self.other_stuff = [ nn.Linear(543, 21) ]

model = Buggy()

for k in model.parameters():
print(k.size())

prints

torch.Size([123, 456])
torch.Size([32, 1, 5, 5])
torch.Size([32])
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A simple option is to add modules in a torch.nn.ModuleList, which is a list
of modules properly dealt with by PyTorch’s machinery.

class AnotherNotBuggy(nn.Module):
def __init__(self):

super(AnotherNotBuggy, self).__init__()
self.conv = nn.Conv2d(1, 32, kernel_size=5)
self.param = Parameter(torch.zeros(123, 456))
self.other_stuff = nn.ModuleList()
self.other_stuff.append(nn.Linear(543, 21))

model = AnotherNotBuggy()

for k in model.parameters():
print(k.size())

prints

torch.Size([123, 456])
torch.Size([32, 1, 5, 5])
torch.Size([32])
torch.Size([21, 543])
torch.Size([21])
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As long as you use autograd-compliant operations, the backward pass is
implemented automatically.

This is crucial to allow the optimization of the Parameters with gradient
descent.
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5.1. Cross-entropy loss
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We can train a model for classification using a regression loss such as the MSE
using a “one-hot vector” encoding: given a training set

(xn, yn) ∈ RD × {1, . . . ,C}, n = 1, . . . ,N,

we would convert the labels into a tensor z ∈ RN×C , with

∀n, zn,m =

{
1 if m = yn
0 otherwise.

For instance, with N = 5 and C = 3, we would have
2
1
1
3
2

⇒


0 1 0
1 0 0
1 0 0
0 0 1
0 1 0

 .

Training can be achieved by matching the output of the model with these
binary values in a MSE sense.
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However, MSE is justified with a Gaussian noise around a target value that
makes sense geometrically. Beside being conceptually wrong for classification, in
practice it penalizes responses “too strongly on the right side”.

As we will see, the criterion of choice for classification is the cross-entropy.

François Fleuret CAS – Deep learning / 5.1. Cross-entropy loss 93 / 174



We can generalize the logistic regression to a multi-class setup with f1, . . . , fC
functionals that we interpret as “logit values”

P(Y = y | X = x ,W = w) =
1

Z
exp fy (x ;w) =

exp fy (x ;w)∑
k exp fk (x ;w)

,

from which

logµW (w | D = d)

= log
µD (d |W = w)µW (w)

µD (d)

= log µD (d |W = w) + log µW (w)− log Z

=
∑
n

logµD (xn, yn |W = w) + log µW (w)− log Z

=
∑
n

log P(Y = yn | X = xn,W = w) + log µW (w)− log Z ′

=
∑
n

log

(
exp fyn (x ;w)∑
k exp fk (x ;w)

)
︸ ︷︷ ︸

Depends on the outputs

+ log µW (w)︸ ︷︷ ︸
Depends on w

− log Z ′.
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If we ignore the penalty on w , it makes sense to minimize the average

ℒ (w) = − 1

N

N∑
n=1

log

(
exp fyn (xn;w)∑
k exp fk (xn;w)

)
︸ ︷︷ ︸

P̂w (Y=yn|X=xn)

.

Given two distributions p and q, their cross-entropy is defined as

H(p, q) = −
∑
k

p(k) log q(k),

with the convention that 0 log 0 = 0. So we can re-write

− log

(
exp fyn (xn;w)∑
k exp fk (xn;w)

)
= − log P̂w (Y = yn | X = xn)

= −
∑
k

δyn (k) log P̂w (Y = k | X = xn)

= H
(
δyn , P̂w (Y = · | X = xn)

)
.

So ℒ above is the average of the cross-entropy between the deterministic “true”
posterior δyn and the estimated P̂w (Y = · | X = xn).
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This is precisely the value of torch.nn.CrossEntropyLoss.

>>> f = torch.tensor([[-1., -3., 4.], [-3., 3., -1.]])
>>> target = torch.tensor([0, 1])
>>> criterion = torch.nn.CrossEntropyLoss()
>>> criterion(f, target)
tensor(2.5141)

and indeed

−1

2

(
log

e−1

e−1 + e−3 + e4
+ log

e3

e−3 + e3 + e−1

)
' 2.5141.

The range of values is 0 for perfectly classified samples, log(C) if the posterior
is uniform, and up to +∞ if the posterior distribution is “worst” than uniform.
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Let’s consider the loss for a single sample in a two-class problem, with a
predictor with two output values. The x axis here is the activation of the
correct output unit, and the y axis is the activation of the other one.

MSE Cross-entropy
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ℒ = (x − 1)2 + (y + 1)2 ℒ = − log
(

ex
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)

MSE incorrectly penalizes outputs which are perfectly valid for prediction,
contrary to cross-entropy.
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The cross-entropy loss can be seen as the composition of a “log soft-max” to
normalize the score into logs of probabilities

(α1, . . . , αC ) 7→
(

log
expα1∑
k expαk

, . . . , log
expαC∑
k expαk

)
,

which can be done with the torch.nn.LogSoftmax module, and a read-out of
the normalized score of the correct class

ℒ (w) = − 1

N

N∑
n=1

fyn (xn;w),

which is implemented by the torch.nn.NLLLoss criterion.

>>> f = torch.tensor([[-1., -3., 4.], [-3., 3., -1.]])
>>> target = torch.tensor([0, 1])
>>> model = nn.LogSoftmax(dim = 1)
>>> criterion = torch.nn.NLLLoss()
>>> criterion(model(f), target)
tensor(2.5141)

Hence, if a network should compute log-probabilities, it may have a
torch.nn.LogSoftmax final layer, and be trained with torch.nn.NLLLoss.

François Fleuret CAS – Deep learning / 5.1. Cross-entropy loss 98 / 174

The mapping

(α1, . . . , αC ) 7→
(

expα1∑
k expαk

, . . . ,
expαC∑
k expαk

)
is called soft-max since it computes a “soft arg-max Boolean label.”

>>> y = torch.tensor([[-10., -10., 10., -5. ],
... [ 3., 0., 0., 0. ],
... [ 1., 2., 3., 4. ]])
>>> f = torch.nn.Softmax(1)
>>> f(y)
tensor([[ 2.0612e-09, 2.0612e-09, 1.0000e+00, 3.0590e-07],

[ 8.7005e-01, 4.3317e-02, 4.3317e-02, 4.3317e-02],
[ 3.2059e-02, 8.7144e-02, 2.3688e-01, 6.4391e-01]])
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PyTorch provides many other criteria, among which

• torch.nn.MSELoss

• torch.nn.CrossEntropyLoss

• torch.nn.NLLLoss

• torch.nn.L1Loss

• torch.nn.NLLLoss2d

• torch.nn.MultiMarginLoss
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5.2. Stochastic gradient descent
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To minimize a loss of the form

ℒ (w) =
N∑

n=1

l(f (xn;w), yn)︸ ︷︷ ︸
ln(w)

the standard gradient-descent algorithm update has the form

wt+1 = wt − η∇ℒ (wt).
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A straight-forward implementation would be

for e in range(nb_epochs):
output = model(train_input)
loss = criterion(output, train_target)

model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad

However, the memory footprint is proportional to the full set size. This can be
mitigated by summing the gradient through “mini-batches”:

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad
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While it makes sense in principle to compute the gradient exactly, in practice:

• It takes time to compute (more exactly all our time!).

• It is an empirical estimation of an hidden quantity, and any partial sum is
also an unbiased estimate, although of greater variance.

• It is computed incrementally

∇ℒ (wt) =
N∑

n=1

∇ln(wt),

and when we compute ln, we have already computed l1, . . . , ln−1, and
we could have a better estimate of w∗ than wt .
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To illustrate how partial sums are good estimates, consider an ideal case where
the training set is the same set of M � N samples replicated K times. Then

ℒ (w) =
N∑

n=1

l(f (xn;w), yn)

=
K∑

k=1

M∑
m=1

l(f (xm;w), ym)

= K
M∑

m=1

l(f (xm;w), ym).

So instead of summing over all the samples and moving by η, we can visit only
M = N/K samples and move by Kη, which would cut the computation by K .

Although this is an ideal case, there is redundancy in practice that results in
similar behaviors.
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The stochastic gradient descent consists of updating the parameters wt after
every sample

wt+1 = wt − η∇ln(t)(wt).

However this does not benefit from the speed-up of batch-processing.

The mini-batch stochastic gradient descent is the standard procedure for deep
learning. It consists of visiting the samples in “mini-batches”, each of a few
tens of samples, and updating the parameters each time.

wt+1 = wt − η
B∑

b=1

∇ln(t,b)(wt).

The order n(t, b) to visit the samples can either be sequential, or uniform
sampling, usually without replacement.

The stochastic behavior of this procedure helps evade local minima.
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So our exact gradient descent with mini-batches

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

can be modified into the mini-batch stochastic gradient descent as follows:

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad
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Limitation of the gradient descent
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The gradient descent method makes a strong assumption about the magnitude
of the “local curvature” to fix the step size, and about its isotropy so that the
same step size makes sense in all directions.
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Some optimization methods leverage higher-order moments, in particular second
order to use a more accurate local model of the functional to optimize.

However for a fixed computational budget, the complexity of these methods
reduces the total number of iterations, and the eventual optimization is worst.

Deep-learning generally relies on a smarter use of the gradient, using statistics
over its past values to make a “smarter step” with the current one.
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Momentum and moment estimation
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The “vanilla” mini-batch stochastic gradient descent (SGD) consists of

wt+1 = wt − ηgt ,

where

gt =
B∑

b=1

∇ln(t,b)(wt)

is the gradient summed over a mini-batch.
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The first improvement is the use of a “momentum” to add inertia in the choice
of the step direction

ut = γut−1 + ηgt

wt+1 = wt − ut .

(Rumelhart et al., 1986)

With γ = 0, this is the same as vanilla SGD.

With γ > 0, this update has three nice properties:

• it can “go through” local barriers,

• it accelerates if the gradient does not change much:

(u = γu + ηg)⇒
(
u =

η

1− γ g
)
,

• it dampens oscillations in narrow valleys.
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Another class of methods exploits the statistics over the previous steps to
compensate for the anisotropy of the mapping.

The Adam algorithm uses moving averages of each coordinate and its square to
rescale each coordinate separately.

The update rule is, on each coordinate separately

mt = β1mt−1 + (1− β1)gt

m̂t =
mt

1− β1

vt = β2vt−1 + (1− β2)g2
t

v̂t =
vt

1− β2

wt+1 = wt −
η√

v̂t + ε
m̂t

(Kingma and Ba, 2014)

This can be seen as a combination of momentum, with m̂t , and a
per-coordinate re-scaling with v̂t .
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These two core strategies have been used in multiple incarnations:

• Nesterov’s accelerated gradient,

• Adagrad,

• Adadelta,

• RMSprop,

• AdaMax,

• Nadam ...
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5.3. PyTorch optimizers
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The PyTorch module torch.optim provides many optimizers.

An optimizer has an internal state to keep quantities such as moving averages,
and operates on an iterator over Parameters.

• Values specific to the optimizer can be specified to its constructor, and

• its step method updates the internal state according to the grad attributes
of the Parameters, and updates the latter according to the internal state.
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We implemented the standard SGD as follows

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad

which can be re-written with the torch.optim package as

optimizer = torch.optim.SGD(model.parameters(), lr = eta)

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
optimizer.zero_grad()
loss.backward()
optimizer.step()
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We have at our disposal many variants of the SGD:

• torch.optim.SGD (momentum, and Nesterov’s algorithm),

• torch.optim.Adam

• torch.optim.Adadelta

• torch.optim.Adagrad

• torch.optim.RMSprop

• torch.optim.LBFGS

• ...

An optimizer can also operate on several iterators, each corresponding to a
group of Parameters that should be handled similarly. For instance, different
layers may have different learning rates or momentums.
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So to use Adam, with its default setting, we just have to replace in our example

optimizer = optim.SGD(model.parameters(), lr = eta)

with

optimizer = optim.Adam(model.parameters(), lr = eta)

B The learning rate may have to be different if the functional was not
properly scaled.
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An example putting all this together
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We now have the tools to build and train a deep network:

• fully connected layers,

• convolutional layers,

• pooling layers,

• ReLU.

And we have the tools to optimize it:

• Loss,

• back-propagation,

• stochastic gradient descent.

The only piece missing is the policy to initialize the parameters.

PyTorch initializes parameters with default rules when modules are created.
They normalize weights according to the layer sizes (Glorot and Bengio, 2010)
and behave usually very well. We will come back to this.
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class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size = 5)
self.conv2 = nn.Conv2d(32, 64, kernel_size = 5)
self.fc1 = nn.Linear(256, 200)
self.fc2 = nn.Linear(200, 10)

def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), kernel_size = 3))
x = F.relu(F.max_pool2d(self.conv2(x), kernel_size = 2))
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
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train_set = torchvision.datasets.MNIST(’./data/mnist/’,
train = True, download = True)

train_input = train_set.train_data.view(-1, 1, 28, 28).float()
train_target = train_set.train_labels

lr, nb_epochs, batch_size = 1e-1, 10, 100

model = Net()

optimizer = torch.optim.SGD(model.parameters(), lr = lr)
criterion = nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)
train_input, train_target = train_input.to(device), train_target.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)

for e in range(nb_epochs):
for input, target in zip(train_input.split(batch_size),

train_target.split(batch_size)):
output = model(input)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
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5.6. Architecture choice and training protocol
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Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use prior knowledge about the ”scale of meaningful context” to size filters
/ combinations of filters (e.g. knowing the size of objects in a scene, the
max duration of a sound snippet that matters),

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.
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Regarding the learning rate, for training to succeed it has to

• reduce the loss quickly ⇒ large learning rate,

• not be trapped in a bad minimum ⇒ large learning rate,

• not bounce around in narrow valleys ⇒ small learning rate, and

• not oscillate around a minimum ⇒ small learning rate.

These constraints lead to a general policy of using a larger step size first, and
a smaller one in the end.

The practical strategy is to look at the losses and error rates across epochs and
pick a learning rate and learning rate adaptation. For instance by reducing it at
discrete pre-defined steps, or with a geometric decay.
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CIFAR10 data-set

32× 32 color images, 50, 000 train samples, 10, 000 test samples.

(Krizhevsky, 2009, chap. 3)
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Small convnet on CIFAR10, cross-entropy, batch size 100, η = 1e − 1.

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75
Lo

ss

A
cc

ur
ac

y

Nb. epochs

Train loss
Test accuracy

François Fleuret CAS – Deep learning / 5.6. Architecture choice and training protocol 132 / 174

Small convnet on CIFAR10, cross-entropy, batch size 100
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Using η = 1e − 1 for 25 epochs, then reducing it.
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While the test error still goes down, the test loss may increase, as it gets even
worse on misclassified examples, and decreases less on the ones getting fixed.
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We can plot the train and test distributions of the per-sample loss

l = − log

(
exp(fY (X ;w))∑
k exp(fk (X ;w))

)
through epochs to visualize the over-fitting.
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7.2. Networks for image classification
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Image classification, standard convnets

François Fleuret CAS – Deep learning / 7.2. Networks for image classification 138 / 174

The most standard networks for image classification are the LeNet family (leCun
et al., 1998), and its modern extensions, among which AlexNet (Krizhevsky
et al., 2012) and VGGNet (Simonyan and Zisserman, 2014).

They share a common structure of several convolutional layers seen as a feature
extractor, followed by fully connected layers seen as a classifier.

The performance of AlexNet was a wake-up call for the computer vision
community, as it vastly out-performed other methods in spite of its simplicity.

Recent advances rely on moving from standard convolutional layers to local
complex architectures to reduce the model size.
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torchvision.models provides a collection of reference networks for computer
vision, e.g.:

import torchvision
alexnet = torchvision.models.alexnet()

The trained models can be obtained by passing pretrained = True to the
constructor(s). This may involve an heavy download given there size.

B The networks from PyTorch listed in the coming slides may differ slightly
from the reference papers which introduced them historically.
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LeNet5 (LeCun et al., 1989). 10 classes, input 1× 28× 28.

(features): Sequential (
(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU (inplace)
(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU (inplace)
(5): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (
(0): Linear (256 -> 120)
(1): ReLU (inplace)
(2): Linear (120 -> 84)
(3): ReLU (inplace)
(4): Linear (84 -> 10)

)
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Alexnet (Krizhevsky et al., 2012). 1, 000 classes, input 3× 224× 224.

(features): Sequential (
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (
(0): Dropout (p = 0.5)
(1): Linear (9216 -> 4096)
(2): ReLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)

)
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Krizhevsky et al. used data augmentation during training to reduce over-fitting.

They generated 2, 048 samples from every original training example through two
classes of transformations:

• crop a 224× 224 image at a random position in the original 256× 256,
and randomly reflect it horizontally,

• apply a color transformation using a PCA model of the color distribution.

During test the prediction is averaged over five random crops and their
horizontal reflections.
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VGGNet19 (Simonyan and Zisserman, 2014). 1, 000 classes, input
3× 224× 224. 16 convolutional layers + 3 fully connected layers.

(features): Sequential (

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(1): ReLU (inplace)

(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(3): ReLU (inplace)

(4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(6): ReLU (inplace)

(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(8): ReLU (inplace)

(9): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(11): ReLU (inplace)

(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(13): ReLU (inplace)

(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(15): ReLU (inplace)

(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(17): ReLU (inplace)

(18): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(20): ReLU (inplace)

(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(22): ReLU (inplace)

(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(24): ReLU (inplace)

(25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(26): ReLU (inplace)

(27): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

/.../
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VGGNet19 (cont.)

(classifier): Sequential (
(0): Linear (25088 -> 4096)
(1): ReLU (inplace)
(2): Dropout (p = 0.5)
(3): Linear (4096 -> 4096)
(4): ReLU (inplace)
(5): Dropout (p = 0.5)
(6): Linear (4096 -> 1000)

)
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We can illustrate the convenience of these pre-trained models on a simple
image-classification problem.

To be sure this picture did not appear in the training data, it was not taken
from the web.

François Fleuret CAS – Deep learning / 7.2. Networks for image classification 146 / 174

import PIL, torch, torchvision

# Imagenet class names
class_names = eval(open(’imagenet1000_clsid_to_human.txt’, ’r’).read())

# Load and normalize the image
to_tensor = torchvision.transforms.ToTensor()
img = to_tensor(PIL.Image.open(’example_images/blacklab.jpg’))
img = img.view(1, img.size(0), img.size(1), img.size(2))
img = 0.5 + 0.5 * (img - img.mean()) / img.std()

# Load and evaluate the network
alexnet = torchvision.models.alexnet(pretrained = True)
alexnet.eval()

output = alexnet(img)

# Prints the classes
scores, indexes = output.view(-1).sort(descending = True)

for k in range(15):
print(’%.02f’ % scores[k].item(), class_names[indexes[k].item()])
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12.26 Weimaraner

10.95 Chesapeake Bay retriever

10.87 Labrador retriever

10.10 Staffordshire bullterrier, Staffordshire bull terrier

9.55 flat-coated retriever

9.40 Italian greyhound

9.31 American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier

9.12 Great Dane

8.94 German short-haired pointer

8.53 Doberman, Doberman pinscher

8.35 Rottweiler

8.25 kelpie

8.24 barrow, garden cart, lawn cart, wheelbarrow

8.12 bucket, pail

8.07 soccer ball

Weimaraner Chesapeake Bay retriever
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Fully convolutional networks
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In many applications, standard convolutional networks are made fully
convolutional by converting their fully connected layers to convolutional ones.
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This “convolutionization” does not change anything if the input size is such
that the output has a single spatial cell, but it fully re-uses computation to
get a prediction at multiple locations when the input is larger.
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We can write a routine that transforms a series of layers from a standard
convnets to make it fully convolutional:

def convolutionize(layers, input_size):
result_layers = []
x = torch.zeros((1, ) + input_size)

for m in layers:
if isinstance(m, torch.nn.Linear):

n = torch.nn.Conv2d(in_channels = x.size(1),
out_channels = m.weight.size(0),
kernel_size = (x.size(2), x.size(3)))

with torch.no_grad():
n.weight.view(-1).copy_(m.weight.view(-1))
n.bias.view(-1).copy_(m.bias.view(-1))

m = n

result_layers.append(m)
x = m(x)

return result_layers

B This function makes the [strong and disputable] assumption that only
nn.Linear has to be converted.
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To apply this to AlexNet

model = torchvision.models.alexnet(pretrained = True)
print(model)

layers = list(model.features) + list(model.classifier)

model = nn.Sequential(*convolutionize(layers, (3, 224, 224)))
print(model)
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AlexNet (
(features): Sequential (

(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)
(classifier): Sequential (

(0): Dropout (p = 0.5)
(1): Linear (9216 -> 4096)
(2): ReLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)

)
)
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Sequential (
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(13): Dropout (p = 0.5)
(14): Conv2d(256, 4096, kernel_size=(6, 6), stride=(1, 1))
(15): ReLU (inplace)
(16): Dropout (p = 0.5)
(17): Conv2d(4096, 4096, kernel_size=(1, 1), stride=(1, 1))
(18): ReLU (inplace)
(19): Conv2d(4096, 1000, kernel_size=(1, 1), stride=(1, 1))

)
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In their “overfeat” approach, Sermanet et al. (2013) combined this with a stride
1 final max-pooling to get multiple predictions.

Input image

Conv layers

Max-pooling

1000d

FC layers

Input image

Conv layers

Max-pooling

1000d

FC layers

AlexNet random cropping Overfeat dense max-pooling

Doing so, they could afford parsing the scene at 6 scales to improve invariance.
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This “convolutionization” has a practical consequence, as we can now re-use
classification networks for dense prediction without re-training.

Also, and maybe more importantly, it blurs the conceptual boundary between
“features” and “classifier” and leads to an intuitive understanding of convnet
activations as gradually transitioning from appearance to semantic.
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In the case of a large output prediction map, a final prediction can be obtained
by averaging the final output map channel-wise.

If the last layer is linear, the averaging can be done first, as in the residual
networks (He et al., 2015).
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Image classification, network in network
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Lin et al. (2013) re-interpreted a convolution filter as a one-layer perceptron,
and extended it with an “MLP convolution” (aka “network in network”) to
improve the capacity vs. parameter ratio.

(a) Linear convolution layer

 . 
. .

 . 
. .

(b) Mlpconv layer

Figure 1: Comparison of linear convolution layer and mlpconv layer. The linear convolution layer
includes a linear filter while the mlpconv layer includes a micro network (we choose the multilayer
perceptron in this paper). Both layers map the local receptive field to a confidence value of the latent
concept.

over the input in a similar manner as CNN and are then fed into the next layer. The overall structure
of the NIN is the stacking of multiple mlpconv layers. It is called “Network In Network” (NIN) as
we have micro networks (MLP), which are composing elements of the overall deep network, within
mlpconv layers,

Instead of adopting the traditional fully connected layers for classification in CNN, we directly
output the spatial average of the feature maps from the last mlpconv layer as the confidence of
categories via a global average pooling layer, and then the resulting vector is fed into the softmax
layer. In traditional CNN, it is difficult to interpret how the category level information from the
objective cost layer is passed back to the previous convolution layer due to the fully connected
layers which act as a black box in between. In contrast, global average pooling is more meaningful
and interpretable as it enforces correspondance between feature maps and categories, which is made
possible by a stronger local modeling using the micro network. Furthermore, the fully connected
layers are prone to overfitting and heavily depend on dropout regularization [4] [5], while global
average pooling is itself a structural regularizer, which natively prevents overfitting for the overall
structure.

2 Convolutional Neural Networks

Classic convolutional neuron networks [1] consist of alternatively stacked convolutional layers and
spatial pooling layers. The convolutional layers generate feature maps by linear convolutional filters
followed by nonlinear activation functions (rectifier, sigmoid, tanh, etc.). Using the linear rectifier
as an example, the feature map can be calculated as follows:

fi,j,k = max(wT
k xi,j , 0). (1)

Here (i, j) is the pixel index in the feature map, xij stands for the input patch centered at location
(i, j), and k is used to index the channels of the feature map.

This linear convolution is sufficient for abstraction when the instances of the latent concepts are
linearly separable. However, representations that achieve good abstraction are generally highly non-
linear functions of the input data. In conventional CNN, this might be compensated by utilizing
an over-complete set of filters [6] to cover all variations of the latent concepts. Namely, individual
linear filters can be learned to detect different variations of a same concept. However, having too
many filters for a single concept imposes extra burden on the next layer, which needs to consider all
combinations of variations from the previous layer [7]. As in CNN, filters from higher layers map
to larger regions in the original input. It generates a higher level concept by combining the lower
level concepts from the layer below. Therefore, we argue that it would be beneficial to do a better
abstraction on each local patch, before combining them into higher level concepts.

In the recent maxout network [8], the number of feature maps is reduced by maximum pooling
over affine feature maps (affine feature maps are the direct results from linear convolution without

2

(Lin et al., 2013)

As for the fully convolutional networks, such local MLPs can be implemented
with 1× 1 convolutions.
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The same notion was generalized by Szegedy et al. (2015) for their GoogLeNet,
through the use of module combining convolutions at multiple scales to let the
optimal ones be picked during training.

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter 
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter 
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1×1 convolutions are used to
compute reductions before the expensive 3×3 and 5×5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2− 3× faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

(Szegedy et al., 2015)
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Szegedy et al. (2015) also introduce the idea of auxiliary classifiers to help the
propagation of the gradient in the early layers.

This is motivated by the reasonable performance of shallow networks that
indicates early layers already encode informative and invariant features.
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The resulting GoogLeNet has 12 times less parameters than AlexNet and is
more accurate on ILSVRC14 (Szegedy et al., 2015).
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(Szegedy et al., 2015)

It was later extended with techniques we are going to see in the next slides:
batch-normalization (Ioffe and Szegedy, 2015) and pass-through à la
resnet (Szegedy et al., 2016).
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Image classification, residual networks
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We already saw the structure of the residual networks and how well they
perform on CIFAR10 (He et al., 2015).

The default residual block proposed by He et al. is of the form

. . .
Conv

3 × 3

64→ 64

BN ReLU
64

Conv

3 × 3

64→ 64

BN + ReLU . . .
64

and as such requires 2× (3× 3× 64 + 1)× 64 ' 73k parameters.
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To apply the same architecture to ImageNet, more channels are required, e.g.

. . .
Conv

3 × 3

256→ 256

BN ReLU
256

Conv

3 × 3

256→ 256

BN + ReLU . . .
256

However, such a block requires 2× (3× 3× 256 + 1)× 256 ' 1.2m parameters.

They mitigated that requirement with what they call a bottleneck block:

. . .
Conv

1 × 1

256→ 64

BN ReLU
256

Conv

3 × 3

64→ 64

BN ReLU

Conv

1 × 1

64→ 256

BN + ReLU . . .
256

256× 64 + (3× 3× 64 + 1)× 64 + 64× 256 ' 70k parameters.

The encoding pushed between blocks is high-dimensional, but the “contextual
reasoning” in convolutional layers is done on a simpler feature representation.
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layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6




1×1, 256
3×3, 256
1×1, 1024


×6




1×1, 256
3×3, 256
1×1, 1024


×23




1×1, 256
3×3, 256

1×1, 1024


×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3




1×1, 512
3×3, 512
1×1, 2048


×3




1×1, 512
3×3, 512

1×1, 2048


×3




1×1, 512
3×3, 512
1×1, 2048


×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.
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model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6
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This was extended to the ResNeXt architecture by Xie et al. (2016), with blocks
with similar number of parameters, but split into 32 “aggregated” pathways.

. . . +

Conv

1 × 1

256→ 4

BN ReLU

256

Conv

3 × 3

4→ 4

BN ReLU

Conv

1 × 1

4→ 256

BN

Conv

1 × 1

256→ 4

BN ReLU

Conv

3 × 3

4→ 4

BN ReLU

Conv

1 × 1

4→ 256

BN

ReLU . . .
256

. . .

When equalizing the number of parameters, this architecture performs better
than a standard resnet.

François Fleuret CAS – Deep learning / 7.2. Networks for image classification 170 / 174

Image classification, summary
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To summarize roughly the evolution of convnets for image classification:

• standard ones are extensions of LeNet5,

• everybody loves ReLU,

• state-of-the-art networks have 100s of channels and 10s of layers,

• they can (should?) be fully convolutional,

• pass-through connections allow deeper “residual” nets,

• bottleneck local structures reduce the number of parameters,

• aggregated pathways reduce the number of parameters.
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Image classification networks

LeNet5

(LeCun et al., 1989)LSTM

(Hochreiter and Schmidhuber, 1997)

Highway Net

(Srivastava et al., 2015)

No recurrence

Deep hierarchical CNN

(Ciresan et al., 2012)

Bigger + GPU

AlexNet

(Krizhevsky et al., 2012)

Bigger + ReLU

+ dropout

Overfeat

(Sermanet et al., 2013)

Fully

convolutional

VGG

(Simonyan and Zisserman, 2014)

Bigger +

small filters

Net in Net

(Lin et al., 2013)

MLPConv

GoogLeNet

(Szegedy et al., 2015)

Inception

modules

ResNet

(He et al., 2015)

No gating

BN-Inception

(Ioffe and Szegedy, 2015)

Batch

Normalization

Inception-ResNet

(Szegedy et al., 2016)

ResNeXt

(Xie et al., 2016)

DenseNet

(Huang et al., 2016)

Wide ResNet

(Zagoruyko and Komodakis, 2016)

Wider

Dense

pass-through
Aggregated

channels
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