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The unreasonable cost of ML

The last decade has seen artificial neural networks improving on many fundamental
tasks from barely usable to close to or beyond human performance.

ImageNet

(Gershgorn, 2017)
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The unreasonable cost of ML

This performance is directly related to the computational cost of predictive models.
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Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
network of the same group share colour, for example
ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size ∝ parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network param-
eters; a legend is reported in the bottom right corner,
spanning from 5× 106 to 155× 106 params.
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Figure 3: Inference time vs. batch size. These two charts show inference time across different batch sizes with
a linear and logarithmic ordinate respectively and logarithmic abscissa. Missing data points are due to lack of
enough system memory required to process bigger batches.

3.2 Inference Time

Figure 3 reports inference time per image on each architecture, as a function of image batch size
(from 1 to 64). We notice that VGG processes one image in more than half second, making it a less
likely contender in real-time applications on a NVIDIA TX1. AlexNet shows a speed up of roughly
15× going from batch of 1 to 64 images, due to weak optimisation of its fully connected layers. It is
a very surprising finding, that will be further discussed in the next subsection.

3.3 Power

Power measurements are complicated by the high frequency swings in current consumption, which
required high sampling current read-out to avoid aliasing. In this work, we used a 200MHz digital
oscilloscope with a current probe, as reported in section 2. Other measuring instruments, such as an
AC power strip with 2Hz sampling rate, or a GPIB controlled DC power supply with 12Hz sampling
rate, did not provide enough bandwidth to properly conduct power measurements.

3

(Canziani et al., 2016)
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The unreasonable cost of ML

500Mwh
'

1.7M car km
'

120kCHF

GTX 1080
for a day
'

5kwh

(OpenAI blog, 2018)

1 petaflop/s-day ' 100 GPUs for a day, ' 500kwh, ' 100CHF of electricity
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The unreasonable cost of ML

This trend has no end in sight, with techniques such as architecture optimization (Zoph
and Le, 2016), and dynamical models (Dehghani et al., 2018; Dupont et al., 2019).

Published as a conference paper at ICLR 2019
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Figure 2: The recurrent blocks of the Universal Transformer encoder and decoder. This diagram omits
position and time-step encodings as well as dropout, residual connections and layer normalization.
A complete version can be found in Appendix A. The Universal Transformer with dynamic halting
determines the number of steps T for each position individually using ACT (Graves, 2016).

After T steps (each updating all positions of the input sequence in parallel), the final output of the
Universal Transformer encoder is a matrix of d-dimensional vector representations HT ∈Rm×d for
the m symbols of the input sequence.

DECODER: The decoder shares the same basic recurrent structure of the encoder. However, after
the self-attention function, the decoder additionally also attends to the final encoder representation
HT of each position in the input sequence using the same multihead dot-product attention function
from Equation 2, but with queries Q obtained from projecting the decoder representations, and keys
and values (K and V ) obtained from projecting the encoder representations (this process is akin to
standard attention (Bahdanau et al., 2014)).

Like the Transformer model, the UT is autoregressive (Graves, 2013). Trained using teacher-forcing, at
generation time it produces its output one symbol at a time, with the decoder consuming the previously
produced output positions. During training, the decoder input is the target output, shifted to the right
by one position. The decoder self-attention distributions are further masked so that the model can
only attend to positions to the left of any predicted symbol. Finally, the per-symbol target distributions
are obtained by applying an affine transformation O ∈ Rd×V from the final decoder state to the
output vocabulary size V , followed by a softmax which yields an (m×V )-dimensional output matrix
normalized over its rows:

p
(
ypos|y[1:pos−1],H

T
)

= SOFTMAX(OHT )1 (8)

To generate from the model, the encoder is run once for the conditioning input sequence. Then the
decoder is run repeatedly, consuming all already-generated symbols, while generating one additional
distribution over the vocabulary for the symbol at the next output position per iteration. We then
typically sample or select the highest probability symbol as the next symbol.

2.2 DYNAMIC HALTING

In sequence processing systems, certain symbols (e.g. some words or phonemes) are usually more
ambiguous than others. It is therefore reasonable to allocate more processing resources to these
more ambiguous symbols. Adaptive Computation Time (ACT) (Graves, 2016) is a mechanism for
dynamically modulating the number of computational steps needed to process each input symbol

1Note that T here denotes time-step T and not the transpose operation.

4

(Dehghani et al., 2018)
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The unreasonable cost of ML

Given the predicted ubiquity of AI, controlling computation is both a practical and a
fundamental issue:

- reduce the economic cost,

- control the environmental impact,

- deploy on low-power environments,

- ensure privacy by allowing on-site inference,

- move to next-generation signal size (microscopy, high-energy physics),

- keep the growth of model size toward biological scales.

It may also shine a light on fundamental connections between computational reduction
and generalization.
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The unreasonable cost of ML

This issue pre-dates deep learning, and is amenable to exact methods in some cases:

FFT for convolutions

(Dubout and Fleuret, 2012, 2013)

Geometrical bounds for clustering

(Newling and Fleuret, 2016a,b, 2017)

Kronecker factorization of weight matrices

M = M1 ⊗ · · · ⊗MN ∈ R2N×2N

(Jose et al., 2018)
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The unreasonable cost of ML

The complexity of deep models makes the derivation of exact accelerations impractical,
beside speeding up low-level linear operations.

Approximate computational reduction has been achieved with

- smaller signal size and pre-trained models,

- smaller architectures and compression (Iandola et al., 2016; Tan and Le, 2019; Ba
and Caruana, 2014; Hinton et al., 2015),

- better normalizations (Glorot and Bengio, 2010; Ioffe and Szegedy, 2015),

- aggressive optimization (Smith and Topin, 2017),

- time-dependent computation (Shelhamer et al., 2016).

Very few methods have data-driven dynamic computation modulation.
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Weighting by sampling
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Weighting by sampling

Costly ML processings are often sums of terms computed independently.

During training: ∑
n
∇L(f )(xn)

Gradient

∑
n

exp(−yn f (xn)) yn h(xn)

Boosting edge

During inference:

∑
n
αnk(x , xn)yn

SVM value

∑
n

softmax

(
QK T

n√
d

)
Vn

Attention-based value
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Weighting by sampling

We can use Monte Carlo with importance sampling to estimate a sum. Given

vn ∈ RD , n = 1, . . .N,

and
µ ∈ D({1, . . . ,N}) , µ > 0,

we have

S =
N∑

n=1

vn

=
N∑

n=1

µ(n)
vn

µ(n)

= EN∼µ

[
vN

µ(N)

]

'
1
K

K∑
k=1

vNk

µ(Nk )
.

where N1, . . . ,NK are i.i.d. ∼ µ, possibly with K � N.
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Weighting by sampling

While
vN

µ(N)

is an unbiased estimator of S for any µ, the sum of its components’ variance

EN∼µ

[∥∥∥∥S −
vN

µ(N)

∥∥∥∥2
]

depends on it.

And the µ minimizing it is

∀n, µ(n) =
‖vn‖∑
m ‖vm‖

.
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Weighting by sampling

So, to apply this idea of importance sampling we need a technical solution to sample
according to [an approximation of]

‖vn‖∑
m ‖vm‖

.

The key issue is that computing ‖vn‖ is often as expensive as computing vn.

We have developed three algorithms to address this challenge:

- Batch re-sampling for deep learning.

- Importance Sampling Tree.

- Attention sampling networks.
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Batch re-sampling
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Batch re-sampling

Given a training set (xn, yn), n = 1, . . . ,N, a model f and a loss L, the standard deep
learning training procedure is the mini-batch stochastic gradient descent

wk+1 = wk − η
∑

n∈Bk

∇|wk
L(f (xn; wk ), yn)︸ ︷︷ ︸
∇|wk

(n)

.

Computation goes into the evaluation of f (xn; wk ) (the “forward pass”) and the
derivative of the loss ∇|wk

(n) (the “backward pass”).
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Batch re-sampling

To apply weighting-by-sampling to this mini-batch approach, we propose to:

1. Sample uniformly B examples, compute their importance,

2. re-sample b < B of them to use for the gradient step.

Sampling according to the ideal weight ‖∇|wk
(n)‖ would require the full computation.

Since the backward pass costs twice the forward, we could use the loss (Schaul et al.,
2015; Loshchilov and Hutter, 2015), but it happens to be a poor approximation.
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Batch re-sampling

Instead, we propose to use an upper bound of the gradient norm.

Layer 1 Layer L

x = x0 ×

w1

s1 σ x1 . . . xL−1 ×

wL

sL σ xL = f (x ; w, b)

With

ρ = max
l,n

∥∥∥∥∥∏
k≥l

σ′
(

sk−1
)

W T
k

∥∥∥∥∥∥∥∥x l
n

∥∥∥,
we get ∥∥∇|wk

(n)
∥∥ ≤ ρ∥∥∥ σ′

(
sL
)
∇|xL

n
(n)︸ ︷︷ ︸

Gradient wrt penultimate activations

∥∥∥.

Recent techniques specifically for deep architectures (batchnorm, layernorm, Xavier’s
init) keep ρ in a reasonable range, and make this result useful in practice.
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Batch re-sampling

This translates into a better approximation of the gradient norm.
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(Katharopoulos and Fleuret, 2018)
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Batch re-sampling

And into a better approximation of the full-batch gradient estimate.
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Batch re-sampling
Wide Resnet 28-2 on CIFAR-10
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Wide Resnet 28-2 on CIFAR-100
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(Katharopoulos and Fleuret, 2018)
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Importance Sampling Tree
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Importance Sampling Tree

A better approach would be to have an approximation of

n 7→
‖vn‖∑
m ‖vm‖

.

We proposed a algorithm similar to the Monte-Carlo Tree Search, to sample the vn
when N is greater to even be enumerated.

E.g. with ‖v1‖ = 5, ‖v2‖ = 5, ‖v3‖ = 10, ‖v4‖ = 30:

v1 v2 v3 v4

p1 = 0.1 p2 = 0.1 p3 = 0.2 p4 = 0.6

0.2

0.5 0.25
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Importance Sampling Tree

Our “Importance Sampling Tree” (Canévet et al., 2016) samples and dynamically
estimates the leaf distribution.

n

n0

. . . . . .

n1

. . . . . .

ŵt (n0) ŵt (n1)

p̂t (n) ' ŵt (n0)
ŵt (n)

It keeps a running estimate ŵt (n) of the weights under each node, and an estimate
p̂t (n) of the probability to “go left”.
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Importance Sampling Tree

We apply it to re-sampling samples according to their gradient norms.

Adaboost

Ground-truth Uniform IST

Two layer neural network

Ground-truth Uniform IST
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Importance Sampling Tree

Deep neural network on MNIST.
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Attention sampling
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Attention Sampling

During inference, there is a similar discrepancy between information content and
computational use, and state-of-the-art models are intractable on large signals.

For instance for images, using a ResNeXt101 (Xie et al., 2016):

Input size Nb. floating point operations (109)
224× 224 22.0

1600× 1400 904.5

Certain application domains require to process images in the giga-pixel range. E.g.
CAMELYON17 images of lymph node sections are 200k × 100k .
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Attention Sampling

Recent models for NLP and image processing utilize attention mechanisms that
modulate the importance of features as a function of the location in the signal, e.g.

Ψ(x ; w) = g

 Q∑
q=1

a(x ; wa)q f (x ; wf )q


where f are the features, a ∈ R+ and

Q∑
q=1

a(x ; wa)q = 1.
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Attention Sampling

And as for our previous algorithms, if we sample

Q1, . . . ,QK i.i.d ∼ a(x ; w),

we have
Q∑

q=1

a(x ; w)q f (x ; w)q '
1
K

K∑
k=1

f (x ; w)Qk
.

And if f is convolutional, it can be computed at sparse locations

f (x ; w)q = f (x|q ; w).

where x|q is a patch extracted at location q.
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Attention Sampling

Given an input image x , our “attention sampling” algorithm

1. computes the attention map on a downscaled image a(x̃ ; wa),

2. samples K high-resolution patches x|Q1
, . . . , x|QK

,

3. computes the final response g

 K∑
k=1

f (x|Qk
; wf )

.

x

x̃

downscale

a(x̃ ; wa)

x|Q1
, . . . , x|QK

sampling { 50, 70, 80, 90 }
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Attention Sampling

The two networks a(.; wa) and f (.; wf ) are trained end-to-end jointly by propagating the
gradient w.r.t wa through the sampling.

With Q ∼ a(x̃ ; wa):

∂

∂wf
E
[

f
(
x|Q; wf

) ]
= E

[
∂

∂wf
f
(
x|Q; wf

)]

,

∂

∂wa
E
[

f
(
x|Q; wf

) ]
=

∂

∂wa

Q∑
q=1

a(x̃ ; wa)q f (x|q ; wf )

=
Q∑

q=1

a(x̃ ; wa)q

∂
∂wa

a(x̃ ; wa)q

a(x̃ ; wa)q
f (x|q ; wf )

= E

[
∂

∂wa
log(a(x̃ ; wa)Q)) f

(
x|Q; wf

)]
.
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Attention Sampling

Input Attention Zoom in

(Katharopoulos and Fleuret, 2019)
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Attention Sampling

Input Ground-truth Attention

(Katharopoulos and Fleuret, 2019)
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Attention Sampling

Speed limit road sign dataset

Method Scale Test Error Time/sample Memory/sample
CNN 0.3 0.311 ± 0.049 6.6 ms 86 MB
CNN 1 0.247 ± 0.001 64.2 ms 958 MB
U-5 0.3/1 0.531 ± 0.004 7.8 ms 39 MB
U-10 0.3/1 0.472 ± 0.008 10.8 ms 78 MB
MIL∗ 1 0.083 ± 0.006 97.2 ms 1,497 MB
ATS-5† 0.3/1 0.089 ± 0.002 8.5 ms 86 MB
ATS-10† 0.3/1 0.095 ± 0.008 10.3 ms 118 MB

Colon cancer dataset
Method Scale Test Error Time/sample Memory/sample
CNN 0.5 0.104 ± 0.009 4.8 ms 65 MB
CNN 1 0.092 ± 0.012 18.7 ms 250 MB
U-10 0.2/1 0.156 ± 0.006 1.8 ms 19 MB
U-50 0.2/1 0.124 ± 0.010 4.6 ms 24 MB
MIL∗ 1 0.093 ± 0.004 48.5 ms 644 MB
ATS-10† 0.2/1 0.093 ± 0.014 1.8 ms 21 MB
ATS-50† 0.2/1 0.093 ± 0.019 4.5 ms 26 MB

∗Ilse et al. (2018), †Katharopoulos and Fleuret (2019)
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Conclusion

This approach has an enormous practical potential:

- Weighting-by-sampling works in practice in a clear formal framework.

- The trend toward larger models does not seem to slow down.

- Recent state-of-the-art approaches are attention-based.

- Lots of promising applications of ML involve very high dimensions signal (particle
physics, astronomy, microscopy, satellite imaging).

The scientific challenges are exciting:

- How to relate minimal computation and generalization?

- Are there fundamental computational bounds?

- How to deal with physical constraints and locality?

- Models have to be re-imagined for computation-by-sampling. What is the resnet or
the batchnorm for it?
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The end
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