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The unreasonable cost of ML

The last decade has seen artificial neural networks improving on many fundamental
tasks from barely usable to close to or beyond human performance.
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The unreasonable cost of ML

This performance is directly related to the computational cost of predictive models.

Frangois Fleuret

80 4
Inception-v3 .
ResNet-101
75 ResNet-SO. VGG-16 VGG-19
' ResNet-34
X 704 @ ResNet-18
g GoogleNet
5
S 65 4
@
g @ BN-NIN
= 60 4 5M 35M 65M 95M 125M---155M
BN-AlexNet
55 1 AlexNet
50 + - - - - - T T T
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Controlling the Computational Cost of ML

(Canziani et al., 2016)

2/34



The unreasonable cost of ML
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(OpenAl blog, 2018)

1 petaflop/s-day ~ 100 GPUs for a day, ~ 500kwh, ~ 100CHF of electricity
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The unreasonable cost of ML

This trend has no end in sight, with techniques such as architecture optimization (Zoph
and Le, 2016), and dynamical models (Dehghani et al., 2018; Dupont et al., 2019).
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The unreasonable cost of ML

Given the predicted ubiquity of Al, controlling computation is both a practical and a
fundamental issue:

- reduce the economic cost,

- control the environmental impact,

- deploy on low-power environments,

- ensure privacy by allowing on-site inference,
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The unreasonable cost of ML

Given the predicted ubiquity of Al, controlling computation is both a practical and a
fundamental issue:

reduce the economic cost,
- control the environmental impact,
deploy on low-power environments,

ensure privacy by allowing on-site inference,
- move to next-generation signal size (microscopy, high-energy physics),
keep the growth of model size toward biological scales.

It may also shine a light on fundamental connections between computational reduction
and generalization.

Frangois Fleuret Controlling the Computational Cost of ML



The unreasonable cost of ML

This issue pre-dates deep learning, and is amenable to exact methods in some cases:

FFT for convolution Geometrical bounds for clustering

N

o ;\?'

(Dubout and Fleuret, 2012, 2013) (Newling and Fleuret, 2016a,b, 2017)

Kronecker factorization of weight matrices
M= M, ®---®MNER2NX2N

(Jose et al., 2018)
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The unreasonable cost of ML

The complexity of deep models makes the derivation of exact accelerations impractical,
beside speeding up low-level linear operations.

Approximate computational reduction has been achieved with
- smaller signal size and pre-trained models,

- smaller architectures and compression (landola et al., 2016; Tan and Le, 2019; Ba
and Caruana, 2014; Hinton et al., 2015),

- better normalizations (Glorot and Bengio, 2010; loffe and Szegedy, 2015),
- aggressive optimization (Smith and Topin, 2017),
- time-dependent computation (Shelhamer et al., 2016).

Very few methods have data-driven dynamic computation modulation.
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Weighting by sampling
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Weighting by sampling

Costly ML processings are often sums of terms computed independently.

During training:

Zvc(f)(XN) ZeXP(—yn (Xn)) ¥n h(xn)

Gradient Boosting edge

During inference:
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Weighting by sampling

We can use Monte Carlo with importance sampling to estimate a sum. Given

vneRP, n=1,...N,

and
pe2({1,...,N}), p>0,

we have
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N
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Weighting by sampling

We can use Monte Carlo with importance sampling to estimate a sum. Given

vneRP, n=1,...N,

and
pe2({1,...,N}), p>0,
we have N
S= Z Vn
n=1
N %
=" u(n—"
,,z:; p(n)
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= Enw, | —
Now L(N)}
K
~l Ny
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where Ny, ..., Ny arei.i.d. ~ p, possibly with K < N.
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Weighting by sampling

While "
N

(N)
is an unbiased estimator of S for any ., the sum of its components’ variance

]

Eno, U'S W

w(N)

depends on it.
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Weighting by sampling

While "
N

(N)
is an unbiased estimator of S for any ., the sum of its components’ variance
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Weighting by sampling

So, to apply this idea of importance sampling we need a technical solution to sample
according to [an approximation of]

[Ivall

X llvill”

The key issue is that computing || v»|| is often as expensive as computing vi.
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Weighting by sampling

So, to apply this idea of importance sampling we need a technical solution to sample
according to [an approximation of]

[Ivall

S vl
The key issue is that computing || v»|| is often as expensive as computing vi.
We have developed three algorithms to address this challenge:

- Batch re-sampling for deep learning.
- Importance Sampling Tree.
- Attention sampling networks.
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Batch re-sampling
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Batch re-sampling

Given a training set (xn, yn),n=1,..., N, amodel f and a loss £, the standard deep
learning training procedure is the mini-batch stochastic gradient descent

Wit = Wi —1 Z Yy L{f(Xn; W), ¥n) -
ne By ~—————
V\wk(”)
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Batch re-sampling

Given a training set (xn, yn),n=1,..., N, amodel f and a loss £, the standard deep
learning training procedure is the mini-batch stochastic gradient descent

Wit = Wi —1 Z Yy L{f(Xn; W), ¥n) -
ne By ~—————
V\wk(")

Computation goes into the evaluation of f(xp; wi) (the “forward pass”) and the
derivative of the loss V|, (n) (the “backward pass”).
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Batch re-sampling

To apply weighting-by-sampling to this mini-batch approach, we propose to:
1. Sample uniformly B examples, compute their importance,
2. re-sample b < B of them to use for the gradient step.

Sampling according to the ideal weight ||V, (n)|| would require the full computation.
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Batch re-sampling

To apply weighting-by-sampling to this mini-batch approach, we propose to:

1. Sample uniformly B examples, compute their importance,
2. re-sample b < B of them to use for the gradient step.

Sampling according to the ideal weight ||V, (n)|| would require the full computation.

Since the backward pass costs twice the forward, we could use the loss (Schaul et al.,
2015; Loshchilov and Hutter, 2015), but it happens to be a poor approximation.
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Batch re-sampling

Instead, we propose to use an upper bound of the gradient norm.

BB -l

Layer 1 Layer L
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Batch re-sampling

Instead, we propose to use an upper bound of the gradient norm.

B A BB

Layer 1 Layer L

With

!
Xn:

£ = max
I,n

1 ok—1 T
ga (S ) W

we get
L
IV (]| < o] " (s*) V) |-
—————
Gradient wrt penultimate activations

Recent techniques specifically for deep architectures (batchnorm, layernorm, Xavier’s
init) keep p in a reasonable range, and make this result useful in practice.
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Batch re-sampling

This translates into a better approximation of the gradient norm.
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(Katharopoulos and Fleuret, 2018)

Controlling the Computational Cost of ML

17/34



Batch re-sampling

And into a better approximation of the full-batch gradient estimate.
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Batch re-sampling
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Importance Sampling Tree
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Importance Sampling Tree

A better approach would be to have an approximation of

[[vall

n— ———.
2 m Vil
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Importance Sampling Tree

A better approach would be to have an approximation of

[l vall

n— ———.
2 m Vil

We proposed a algorithm similar to the Monte-Carlo Tree Search, to sample the v,
when N is greater to even be enumerated.

E.g. with [[vs|| =5, [[val =5, [|vs]| = 10, [|va]| = 30:

V4 Vo V3 Vy
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Importance Sampling Tree

A better approach would be to have an approximation of

[l vall

n— ———.
2 m Vil

We proposed a algorithm similar to the Monte-Carlo Tree Search, to sample the v,
when N is greater to even be enumerated.

E.g. with [[vs|| =5, [[val =5, [|vs]| = 10, [|va]| = 30:

V4 Vo V3 Vy

p1 =0.1 p2 = 0.1 p3 =0.2 ps = 0.6
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Importance Sampling Tree

A better approach would be to have an approximation of

[l vall

n— ———.
2 m Vil

We proposed a algorithm similar to the Monte-Carlo Tree Search, to sample the v,
when N is greater to even be enumerated.

E.g. with [[vs|| =5, [[val =5, [|vs]| = 10, [|va]| = 30:
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p1 =0.1 p2 = 0.1 p3 =0.2 ps = 0.6
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Importance Sampling Tree

Our “Importance Sampling Tree” (Canévet et al., 2016) samples and dynamically
estimates the leaf distribution.

No m
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Importance Sampling Tree
Our “Importance Sampling Tree” (Canévet et al., 2016) samples and dynamically

estimates the leaf distribution.

mn

wi(ny)

Mo

Wi (o)

It keeps a running estimate W;(n) of the weights under each node, and an estimate

pi(n) of the probability to “go left”.
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Importance Sampling Tree

We apply it to re-sampling samples according to their gradient norms

Adaboost
Ground-truth Uniform IST

Two layer neural network

Ground-truth Uniform

TvIvIY.
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Controlling the Computation.



./videos/sampling_adaboost_IST.mp4
./videos/sampling_ann_IST.mp4

Importance Sampling Tree

Deep neural network on MNIST.
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Attention sampling
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Attention Sampling

During inference, there is a similar discrepancy between information content and
computational use, and state-of-the-art models are intractable on large signals.

For instance for images, using a ResNeXt101 (Xie et al., 2016):

Input size Nb. floating point operations (10°)
224 x 224 22.0
1600 x 1400 904.5

Certain application domains require to process images in the giga-pixel range. E.g.
CAMELYON17 images of lymph node sections are 200k x 100k.
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Attention Sampling

Recent models for NLP and image processing utilize attention mechanisms that

modulate the importance of features as a function of the location in the signal, e.g.

Q
V(x; w) = (Za (X; Wa)q F(X; Wf)q)
q=1

where f are the features, a € R and

Q
a(x; wa)g = 1.

Q
Il
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Attention Sampling

And as for our previous algorithms, if we sample
Qq,...,Qg iid ~ a(x; w),

we have
Q K

Z a(x; w)q f(x; w)g ~ }l( Z f(x; w)q, -

q=1 k=1

And if f is convolutional, it can be computed at sparse locations
f(x; w)g = f(Xq: W).

where x|, is a patch extracted at location q.
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Attention Sampling

Given an input image x, our “attention sampling” algorithm

1. computes the attention map on a downscaled image a(x; wa),
2. samples K high-resolution patches xq,; - - -, X|qj»

K
3. computes the final response g <Z f(Xq,; w,)).
k=1
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Attention Sampling

Given an input image x, our “attention sampling” algorithm

1. computes the attention map on a downscaled image a(x; wa),
2. samples K high-resolution patches xq,; - - -, X|qj»

K
3. computes the final response g (Z f(Xq,; wf)>.
k=1
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Attention Sampling

Given an input image x, our “attention sampling” algorithm

1. computes the attention map on a downscaled image a(x; wa),

2. samples K high-resolution patches xq,; - - -, X|qj»
K

3. computes the final response g | > f(xq,; W)
k=1

sampling {50,70,80,90 }
P

X|l@gs - Xjay

downscale

T A
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Attention Sampling

The two networks a(.; wz) and f(.; wy) are trained end-to-end jointly by propagating the
gradient w.r.t w;, through the sampling.

With Q ~ a(X; wa):

%E{f(x‘o; W,)] =K {;Wff(x‘o; Wf):|
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Attention Sampling
The two networks a(.; wz) and f(.; wy) are trained end-to-end jointly by propagating the
gradient w.r.t w;, through the sampling.
With Q ~ a(X; wa):

ain]E{f(x‘Q; Wf)] =K {Bimqf(x‘o; W,)] ,

8 0 &
TBE[)‘(X‘Q; Wf)] = Z a(X; wa)q f(X|q: Wr)

Q 9z a(X; wa)q
=3 % wa)g 2 f(x|q; W)
alq

1
= 5[ 52 tog(al wala)) f(xai w)|.
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Attention Sampling

Attention Zoom in

(Katharopoulos and Fleuret, 2019)
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Attention Sampling

Ground-truth Attention
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(Katharopoulos and Fleuret, 2019)
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Attention Sampling

Francois Fleuret

Speed limit road sign dataset

Method Scale Test Error Time/sample Memory/sample
CNN 0.3 0.311 + 0.049 6.6 ms 86 MB
CNN 1 0.247 + 0.001 64.2 ms 958 MB
U-5 0.3/1 0.531 + 0.004 7.8 ms 39 MB
U-10 0.3/1 0.472 + 0.008 10.8 ms 78 MB
MiL* 1 0.083 + 0.006 97.2ms 1,497 MB
ATS-5F 0.3/1 0.089 £ 0.002 8.5 ms 86 MB
ATS-10f 0.3/1 0.095 + 0.008 10.3 ms 118 MB
Colon cancer dataset
Method Scale Test Error Time/sample Memory/sample
CNN 0.5 0.104 + 0.009 4.8 ms 65 MB
CNN 1 0.092 + 0.012 18.7 ms 250 MB
U-10 0.2/1 0.156 + 0.006 1.8 ms 19 MB
U-50 0.2/1 0.124 + 0.010 4.6 ms 24 MB
MiL* 1 0.093 + 0.004 48.5ms 644 MB
ATS-107 0.2/1 0.093 + 0.014 1.8 ms 21 MB
ATS-50" 0.2/1 0.093 + 0.019 4.5ms 26 MB

*lise et al. (2018), TKatharopoulos and Fleuret (2019)
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Conclusion

This approach has an enormous practical potential:
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Weighting-by-sampling works in practice in a clear formal framework.
The trend toward larger models does not seem to slow down.
Recent state-of-the-art approaches are attention-based.

Lots of promising applications of ML involve very high dimensions signal (particle
physics, astronomy, microscopy, satellite imaging).
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Conclusion

This approach has an enormous practical potential:

Weighting-by-sampling works in practice in a clear formal framework.

The trend toward larger models does not seem to slow down.

Recent state-of-the-art approaches are attention-based.

Lots of promising applications of ML involve very high dimensions signal (particle

physics, astronomy, microscopy, satellite imaging).

The scientific challenges are exciting:

Frangois Fleuret

How to relate minimal computation and generalization?

Are there fundamental computational bounds?

How to deal with physical constraints and locality?

Models have to be re-imagined for computation-by-sampling. What is the resnet or

the batchnorm for it?
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The end
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