
Fast Attention Models

François Fleuret

Joint work with Angelos Katharopoulos,
Apoorv Vyas, and Nikos Pappas.

Attention Layers

François Fleuret Fast Attention Models 1 / 24

There has been recently a strong interest for attention mechanisms to transport
information from parts of the signal to other parts specified dynamically.

x1 x2 x3 x4 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient for natural language processing, for which
they have replaced recurrent architectures.

François Fleuret Fast Attention Models 2 / 24

Consider a task with 1d sequences composed of two triangles and two
rectangles, where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret Fast Attention Models 3 / 24

Consider a task with 1d sequences composed of two triangles and two
rectangles, where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret Fast Attention Models 3 / 24

Consider a task with 1d sequences composed of two triangles and two
rectangles, where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret Fast Attention Models 3 / 24

Consider a task with 1d sequences composed of two triangles and two
rectangles, where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret Fast Attention Models 3 / 24

Consider a task with 1d sequences composed of two triangles and two
rectangles, where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret Fast Attention Models 3 / 24

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

François Fleuret Fast Attention Models 4 / 24

Given a input sequence X ∈ RT×D , a standard convolution layer computes a
result X ′ ∈ RT×D′ with

∀t , X ′t =
t+∆∑
s=t

Ws−t Xs.

We test first a 1d convolutional network, with no attention mechanism.

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(5): ReLU()
(6): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(7): ReLU()
(8): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

nb_parameters 62337

François Fleuret Fast Attention Models 5 / 24

Given a input sequence X ∈ RT×D , a standard convolution layer computes a
result X ′ ∈ RT×D′ with

∀t , X ′t =
t+∆∑
s=t

Ws−t Xs.

We test first a 1d convolutional network, with no attention mechanism.

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(5): ReLU()
(6): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(7): ReLU()
(8): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

nb_parameters 62337

François Fleuret Fast Attention Models 5 / 24

100 101 102

Nb. of epochs

0

200

400

600

800

1000

1200

1400

1600

M
S

E

Without attention

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

François Fleuret Fast Attention Models 6 / 24

The poor performance of this model is not surprising given its inability to channel
information from “far away” in the signal.

More layers, global averaging, or fully connected layers could possibly solve the
problem. However it is more natural to equip the model with the ability to fetch
information from parts of the signal that it actively identifies as relevant.

This is exactly what an attention layer does.

François Fleuret Fast Attention Models 7 / 24

Given a sequence X ∈ RT×D , a standard self-attention layer computes first
three sequences:

– the queries: Q = X W>Q ∈ RT×C ,
– the keys: K = X W>K ∈ RT×C ,
– the values: V = X W>V ∈ RT×D′ ,

from which it computes an attention matrix

∀t , s, At,s =
exp

(
Qt K>s

)∑T
u=1 exp

(
Qt K>u

)
where At,s should be interpreted as how much position s matters for
computing the result at position t .

And the resulting sequence X ′ ∈ RT×D′ is

∀t , X ′t =
T∑

s=1

At,sVs.

François Fleuret Fast Attention Models 8 / 24

Given a sequence X ∈ RT×D , a standard self-attention layer computes first
three sequences:

– the queries: Q = X W>Q ∈ RT×C ,
– the keys: K = X W>K ∈ RT×C ,
– the values: V = X W>V ∈ RT×D′ ,

from which it computes an attention matrix

∀t , s, At,s =
exp

(
Qt K>s

)∑T
u=1 exp

(
Qt K>u

)
where At,s should be interpreted as how much position s matters for
computing the result at position t .

And the resulting sequence X ′ ∈ RT×D′ is

∀t , X ′t =
T∑

s=1

At,sVs.

François Fleuret Fast Attention Models 8 / 24

Given a sequence X ∈ RT×D , a standard self-attention layer computes first
three sequences:

– the queries: Q = X W>Q ∈ RT×C ,
– the keys: K = X W>K ∈ RT×C ,
– the values: V = X W>V ∈ RT×D′ ,

from which it computes an attention matrix

∀t , s, At,s =
exp

(
Qt K>s

)∑T
u=1 exp

(
Qt K>u

)
where At,s should be interpreted as how much position s matters for
computing the result at position t .

And the resulting sequence X ′ ∈ RT×D′ is

∀t , X ′t =
T∑

s=1

At,sVs.

François Fleuret Fast Attention Models 8 / 24

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): AttentionLayer(in_channels=64, out_channels=64, key_channels=64)
(5): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(6): ReLU()
(7): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

nb_parameters 54081

François Fleuret Fast Attention Models 9 / 24

100 101 102

Nb. of epochs

0

200

400

600

800

1000

1200

1400

1600

M
S

E

Without attention

With attention

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

François Fleuret Fast Attention Models 10 / 24

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

0 20 40 60 80 100
0

20

40

60

80

100

François Fleuret Fast Attention Models 11 / 24

Transformers

François Fleuret Fast Attention Models 12 / 24

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

(Vaswani et al., 2017)

François Fleuret Fast Attention Models 13 / 24

Head 9-6

- Prepositions attend to their objects

- 76.3% accuracy at the pobj relation

Head 8-11

- Noun modifiers (e.g., determiners) attend
 to their noun

- 94.3% accuracy at the det relation

Head 8-10

- Direct objects attend to their verbs

- 86.8% accuracy at the dobj relation

Head 7-6

- Possessive pronouns and apostrophes
 attend to the head of the corresponding NP

- 80.5% accuracy at the poss relation

Head 4-10

- Passive auxiliary verbs attend to the
 verb they modify

- 82.5% accuracy at the auxpass relation

Head 5-4

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
 coreferent mention to the head of an antecedent

Figure 5: BERT attention heads that correspond to linguistic phenomena. In the example attention maps, the
darkness of a line indicates the strength of the attention weight. All attention to/from red words is colored red;
these colors are there to highlight certain parts of the attention heads’ behaviors. For Head 9-6, we don’t show
attention to [SEP] for clarity. Despite not being explicitly trained on these tasks, BERT’s attention heads perform
remarkably well, illustrating how syntax-sensitive behavior can emerge from self-supervised training alone.

(Clark et al., 2019)

François Fleuret Fast Attention Models 14 / 24

D Total Compute Used to Train Language Models

This appendix contains the calculations that were used to derive the approximate compute used to train the language
models in Figure 2.2. As a simplifying assumption, we ignore the attention operation, as it typically uses less than 10%
of the total compute for the models we are analyzing.

Calculations can be seen in Table D.1 and are explained within the table caption.

Model

Total train
compute
(PF-days)

Total train
compute
(flops)

Params
(M)

Training tokens
(billions)

Flops
per param
per token

Mult for
bwd pass

Fwd-pass
flops per

active param
per token

Frac of
params active

for each
token

T5-Small 2.08E+00 1.80E+20 60 1,000 3 3 1 0.5
T5-Base 7.64E+00 6.60E+20 220 1,000 3 3 1 0.5
T5-Large 2.67E+01 2.31E+21 770 1,000 3 3 1 0.5
T5-3B 1.04E+02 9.00E+21 3,000 1,000 3 3 1 0.5
T5-11B 3.82E+02 3.30E+22 11,000 1,000 3 3 1 0.5
BERT-Base 1.89E+00 1.64E+20 109 250 6 3 2 1.0
BERT-Large 6.16E+00 5.33E+20 355 250 6 3 2 1.0
RoBERTa-Base 1.74E+01 1.50E+21 125 2,000 6 3 2 1.0
RoBERTa-Large 4.93E+01 4.26E+21 355 2,000 6 3 2 1.0
GPT-3 Small 2.60E+00 2.25E+20 125 300 6 3 2 1.0
GPT-3 Medium 7.42E+00 6.41E+20 356 300 6 3 2 1.0
GPT-3 Large 1.58E+01 1.37E+21 760 300 6 3 2 1.0
GPT-3 XL 2.75E+01 2.38E+21 1,320 300 6 3 2 1.0
GPT-3 2.7B 5.52E+01 4.77E+21 2,650 300 6 3 2 1.0
GPT-3 6.7B 1.39E+02 1.20E+22 6,660 300 6 3 2 1.0
GPT-3 13B 2.68E+02 2.31E+22 12,850 300 6 3 2 1.0
GPT-3 175B 3.64E+03 3.14E+23 174,600 300 6 3 2 1.0

Table D.1: Starting from the right hand side and moving left, we begin with the number of training tokens that each
model was trained with. Next we note that since T5 uses an encoder-decoder model, only half of the parameters are
active for each token during a forward or backwards pass. We then note that each token is involved in a single addition
and a single multiply for each active parameter in the forward pass (ignoring attention). Then we add a multiplier of
3x to account for the backwards pass (as computing both ∂params

∂loss and ∂acts
∂loss use a similar amount of compute as the

forwards pass. Combining the previous two numbers, we get the total flops per parameter per token. We multiply this
value by the total training tokens and the total parameters to yield the number of total flops used during training. We
report both flops and petaflop/s-day (each of which are 2.88e+7 flops).

E Human Quality Assessment of Synthetic News Articles

This appendix contains details on the experiments measuring human ability to distinguish GPT-3-generated synthetic
news articles from real news articles. We first describe the experiments on the ∼ 200 word news articles, and then
describe the preliminary investigation of ∼ 500 word news articles generated by GPT-3.

Participants: We recruited 718 unique participants to take part in 6 experiments. 97 participants were excluded for
failing an internet check question, leaving a total of 621 participants: 343 male, 271 female, and 7 other. Mean
participant age was ∼ 38 years old. All participants were recruited through Positly, which maintains a whitelist of
high-performing workers from Mechanical Turk. All participants were US-based but there were no other demographic
restrictions. Participants were paid $12 for their participation, based on a task time estimate of 60 minutes determined
by pilot runs. In order to ensure that the sample of participants for each experiment quiz was unique, participants were
not allowed to take part in an experiment more than once.

Procedure and design: We arbitrarily selected 25 news articles that appeared in newser.com in early 2020. We used
the article titles and subtitles to produce outputs from the 125M, 350M, 760M, 1.3B, 2.7B, 6.7B, 13.0B, and 200B
(GPT-3) parameter language models. Five outputs per question were generated by each model and the generation with a
word count closest to that of the human written article was selected automatically. This was to minimize the effect
that completion length might have on participants’ judgments. The same output procedure for each model with the
exception of the removal of the intentionally bad control model, as described in the main text.

45

(Brown et al., 2020)

François Fleuret Fast Attention Models 15 / 24

Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy
validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
observed in [KMH+20] continues for an additional two orders of magnitude with only small deviations from the
predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.

Setting PTB

SOTA (Zero-Shot) 35.8a

GPT-3 Zero-Shot 20.5

Table 3.1: Zero-shot results on PTB language modeling dataset. Many other common language modeling datasets
are omitted because they are derived from Wikipedia or other sources which are included in GPT-3’s training data.
a[RWC+19]

3.1 Language Modeling, Cloze, and Completion Tasks

In this section we test GPT-3’s performance on the traditional task of language modeling, as well as related tasks
that involve predicting a single word of interest, completing a sentence or paragraph, or choosing between possible
completions of a piece of text.

3.1.1 Language Modeling

We calculate zero-shot perplexity on the Penn Tree Bank (PTB) [MKM+94] dataset measured in [RWC+19]. We omit
the 4 Wikipedia-related tasks in that work because they are entirely contained in our training data, and we also omit the
one-billion word benchmark due to a high fraction of the dataset being contained in our training set. PTB escapes these
issues due to predating the modern internet. Our largest model sets a new SOTA on PTB by a substantial margin of 15
points, achieving a perplexity of 20.50. Note that since PTB is a traditional language modeling dataset it does not have
a clear separation of examples to define one-shot or few-shot evaluation around, so we measure only zero-shot.

3.1.2 LAMBADA

The LAMBADA dataset [PKL+16] tests the modeling of long-range dependencies in text – the model is asked to
predict the last word of sentences which require reading a paragraph of context. It has recently been suggested that the
continued scaling of language models is yielding diminishing returns on this difficult benchmark. [BHT+20] reflect on
the small 1.5% improvement achieved by a doubling of model size between two recent state of the art results ([SPP+19]

11

(Brown et al., 2020)

François Fleuret Fast Attention Models 16 / 24

Multiple attempts have been made at reducing the computational cost:

• Weight pruning (Michel et al., 2019), weight factorization (Lan et al., 2020),
weight quantization (Zafrir et al., 2019).

• Model distillation (Sanh et al., 2019).
• Controlling the attention horizon (Dai et al., 2019; Sukhbaatar et al., 2019).
• Sparse factorization of the attention matrix (Child et al., 2019).
• Hashing (Kitaev et al., 2020).

We have developed one approach that clusters queries to make the cost O(CT)
instead of O(T 2) (Vyas et al., 2020), and a second that linearizes the attention
score (Katharopoulos et al., 2020).

François Fleuret Fast Attention Models 17 / 24

Linear Attention

François Fleuret Fast Attention Models 18 / 24

An important part of the computation goes into the O(T 2) attention-based
processing:

X ′t =

∑
s exp

(
Qt K>s

)
Vs∑

s exp
(
Qt K>s

) .

If we kernelize the similarity measure, the expression becomes linear:

X ′t '
∑

s
(
Φ(Qt) Φ(Ks)>

)
Vs∑

s Φ(Qt) Φ(Ks)>
.

And we can use the associativity of the matrix product to reduce the cost(
Φ(Q)Φ(K)>

)
V︸ ︷︷ ︸

O(T 2D)+O(T 2D)

= Φ(Q)
(

Φ(K)>V
)

︸ ︷︷ ︸
O(TD2)+O(TD2)

.

(Katharopoulos et al., 2020)

François Fleuret Fast Attention Models 19 / 24

An important part of the computation goes into the O(T 2) attention-based
processing:

X ′t =

∑
s exp

(
Qt K>s

)
Vs∑

s exp
(
Qt K>s

) .

If we kernelize the similarity measure, the expression becomes linear:

X ′t '
∑

s
(
Φ(Qt) Φ(Ks)>

)
Vs∑

s Φ(Qt) Φ(Ks)>
.

And we can use the associativity of the matrix product to reduce the cost(
Φ(Q)Φ(K)>

)
V︸ ︷︷ ︸

O(T 2D)+O(T 2D)

= Φ(Q)
(

Φ(K)>V
)

︸ ︷︷ ︸
O(TD2)+O(TD2)

.

(Katharopoulos et al., 2020)

François Fleuret Fast Attention Models 19 / 24

An important part of the computation goes into the O(T 2) attention-based
processing:

X ′t =

∑
s exp

(
Qt K>s

)
Vs∑

s exp
(
Qt K>s

) .

If we kernelize the similarity measure, the expression becomes linear:

X ′t '
∑

s
(
Φ(Qt) Φ(Ks)>

)
Vs∑

s Φ(Qt) Φ(Ks)>
.

And we can use the associativity of the matrix product to reduce the cost(
Φ(Q)Φ(K)>

)
V︸ ︷︷ ︸

O(T 2D)+O(T 2D)

= Φ(Q)
(

Φ(K)>V
)

︸ ︷︷ ︸
O(TD2)+O(TD2)

.

(Katharopoulos et al., 2020)

François Fleuret Fast Attention Models 19 / 24

In practice we take
Φ(x) = ELU(x) + 1.

Transformers are RNNs

29 210 211 212 213 214 215 216

Sequence Length

100

101

102

T
im

e
(m

il
li

se
co

n
d

s)

29 210 211 212 213 214 215 216

Sequence Length

101

102

103

G
P

U
M

em
o
ry

(M
B

)

linear(ours)

softmax

lsh-1

lsh-4

lsh-8

Figure 1: Comparison of the computational requirements for a forward/backward pass for Reformer (lsh-X), softmax
attention and linear attention. Linear and Reformer models scale linearly with the sequence length unlike softmax which
scales with the square of the sequence length both in memory and time. Full details of the experiment can be found in § 4.1.

0 2000 4000 6000 8000 10000

Gradient steps

10−4

10−3

10−2

10−1

100

C
ro

ss
E

n
tr

o
p
y

L
o
ss

linear (ours)

softmax

lsh-4

Figure 2: Convergence comparison of softmax, linear and
reformer attention on a sequence duplication task. linear
converges stably and reaches the same final performance as
softmax. The details of the experiment are in § 4.1.

different symbols separated by a dedicated separator symbol.
For all three methods, we train a 4 layer transformer with
8 attention heads using a batch size of 64 and the RAdam
optimizer (Liu et al., 2019) with a learning rate of 10−3

which is reduced to 10−4 after 3000 updates. Figure 2 de-
picts the loss with respect to the number of gradient steps.
We observe that linear converges smoothly and reaches a
lower loss than lsh due to the lack of noise introduced by
hashing. In particular, it reaches the same loss as softmax.

4.1.2. MEMORY AND COMPUTATIONAL REQUIREMENTS

In this subsection, we compare transformers with respect
to their computational and memory requirements. We com-
pute the attention and the gradients for a synthetic input
with varying sequence lengths N ∈ {29, 210, . . . , 216} and
measure the peak allocated GPU memory and required time
for each variation of transformer. We scale the batch size
inversely with the sequence length and report the time and
memory per sample in the batch.

Every method is evaluated up to the maximum sequence
length that fits the GPU memory. For this benchmark we
use an NVidia GTX 1080 Ti with 11GB of memory. This
results in a maximum sequence length of 4,096 elements
for softmax and 16,384 for lsh-4 and lsh-8. As expected,
softmax scales quadratically with respect to the sequence
length. Our method is faster and requires less memory than
the baselines for every configuration, as seen in figure 1.
We observe that both Reformer and linear attention scale
linearly with the sequence length. Note that although the
asymptotic complexity for Reformer isO (N logN), logN
is small enough and does not affect the computation time.

4.2. Image Generation

Transformers have shown great results on the task of condi-
tional or unconditional autoregressive generation (Radford
et al., 2019; Child et al., 2019), however, sampling from
transformers is slow due to the task being inherently se-
quential and the memory scaling with the square of the
sequence length. In this section, we train causally masked
transformers to predict images pixel by pixel. Our achieved
performance in terms of bits per dimension is on par with
softmax attention while being able to generate images more
than 1,000 times faster and with constant memory per
image from the first to the last pixel. We refer the reader
to our supplementary for comparisons in terms of training
evolution, quality of generated images and time to generate
a single image. In addition, we also compare with a faster
softmax transformer that caches the keys and values during
inference, in contrast to the PyTorch implementation.

4.2.1. MNIST

First, we evaluate our model on image generation with au-
toregressive transformers on the widely used MNIST dataset
(LeCun et al., 2010). The architecture for this experiment
comprises 8 attention layers with 8 attention heads each. We

(Katharopoulos et al., 2020)

François Fleuret Fast Attention Models 20 / 24

Additionally, when they are used as generative models (e.g. translation)
transformers require to process the sequence for every new token.

Our linearization allows to keep running quantities:

X ′t+1 '
∑t

s=1 Φ(Qt+1) Φ(Ks)Vs∑t
s=1 Φ(Qt+1) Φ(Ks)

=
Φ(Qt+1)

∑t
s=1 Φ(Ks)Vs

Φ(Qt+1)
∑t

s=1 Φ(Ks)

=
Φ(Qt+1)

((∑t−1
s=1 Φ(Ks)>Vs

)
+ Φ(Kt)

>Vt

)
Φ(Qt+1)

((∑t−1
s=1 Φ(Ks)>

)
+ Φ(Kt)>

)
which can be interpreted as the hidden state of a recurrent unit.

(Katharopoulos et al., 2020)

François Fleuret Fast Attention Models 21 / 24

Transformers are RNNs

(a) Softmax (b) Linear (ours)

(c) LSH-1 (d) LSH-4

Figure 2: Unconditional samples from the transformer models trained with MNIST. See § 4.2.1 in the main paper.

Transformers are RNNs

(a) Softmax (b) Linear (ours)

(c) LSH-1 (d) LSH-4

Figure 4: Unconditional samples from the transformer models trained with CIFAR-10. See § 4.2.2 in the main paper.

(Katharopoulos et al., 2020)

François Fleuret Fast Attention Models 22 / 24

Transformers are RNNs

Method Bits/dim Images/sec
Softmax 0.621 0.45 (1×)
LSH-1 0.745 0.68 (1.5×)
LSH-4 0.676 0.27 (0.6×)
Linear (ours) 0.644 142.8 (317×)

Table 1: Comparison of autoregressive image generation of
MNIST images. Our linear transformers achieve almost the
same bits/dim as the full softmax attention but more than
300 times higher throughput in image generation. The full
details of the experiment are in § 4.2.1.

set the embedding size to 256 which is 32 dimensions per
head. Our feed forward dimensions are 4 times larger than
our embedding size. We model the output with a mixture
of 10 logistics as introduced by Salimans et al. (2017). We
use the RAdam optimizer with a learning rate of 10−4 and
train all models for 250 epochs. For the reformer baseline,
we use 1 and 4 hashing rounds. Furthermore, as suggested
in Kitaev et al. (2020), we use 64 buckets and chunks with
approximately 32 elements. In particular, we divide the
783 long input sequence to 27 chunks of 29 elements each.
Since the sequence length is realtively small, namely only
784 pixels, to remove differences due to different batch sizes
we use a batch size of 10 for all methods.

Table 1 summarizes the results. We observe that linear
transformers achieve almost the same performance, in terms
of final perplexity, as softmax transformers while being
able to generate images more than 300 times faster. This is
achieved due to the low memory requirements of our model,
which is able to simultaneously generate 10,000 MNIST
images with a single GPU. In particular, the memory is
constant with respect to the sequence length because the
only thing that needs to be stored between pixels are the
si and zi values as described in equations 18 and 19. On
the other hand, both softmax and Reformer require memory
that increases with the length of the sequence.

Image completions and unconditional samples from our
MNIST model can be seen in figure 3. We observe that
our linear transformer generates very convincing samples
with sharp boundaries and no noise. In the case of image
completion, we also observe that the transformer learns to
use the same stroke style and width as the original image
effectively attending over long temporal distances. Note that
as the achieved perplexity is more or less the same for all
models, we do not observe qualitative differences between
the generated samples from different models.

4.2.2. CIFAR-10

The benefits of our linear formulation increase as the se-
quence length increases. To showcase that, we train 16 layer

Method Bits/dim Images/sec
Softmax 3.47 0.004 (1×)
LSH-1 3.39 0.015 (3.75×)
LSH-4 3.51 0.005 (1.25×)
Linear (ours) 3.40 17.85 (4,462×)

Table 2: We train autoregressive transformers for 1 week
on a single GPU to generate CIFAR-10 images. Our linear
transformer completes 3 times more epochs than softmax,
which results in better perplexity. Our model generates
images 4,000× faster than the baselines. The full details of
the experiment are in § 4.2.2.

transformers to generate CIFAR-10 images (Krizhevsky
et al., 2009). For each layer we use the same configuration
as in the previous experiment. For Reformer, we use again
64 buckets and 83 chunks of 37 elements, which is approx-
imately 32, as suggested in the paper. Since the sequence
length is almost 4 times larger than for the previous exper-
iment, the full transformer can only be used with a batch
size of 1 in the largest GPU that is available to us, namely
an NVidia P40 with 24GB of memory. For both the linear
transformer and reformer, we use a batch size of 4. All
models are trained for 7 days. We report results in terms of
bits per dimension and image generation throughput in table
2. Note that although the main point of this experiment is
not the final perplexity, it is evident that as the sequence
length grows, the fast transformer models become increas-
ingly more efficient per GPU hour, achieving better scores
than their slower counterparts.

As the memory and time to generate a single pixel scales
quadratically with the number of pixels for both Reformer
and softmax attention, the increase in throughput for our lin-
ear transformer is even more pronounced. In particular, for
every image generated by the softmax transformer, our
method can generate 4,460 images. Image completions
and unconditional samples from our model can be seen in
figure 4. We observe that our model generates images with
spatial consistency and can complete images convincigly
without significantly hindering the recognition of the image
category. For instance, in figure 4b, all images have success-
fully completed the dog’s nose (first row) or the windshield
of the truck (last row).

4.3. Automatic Speech Recognition

To show that our method can also be used for non-
autoregressive tasks, we evaluate the performance of linear
transformers in end-to-end automatic speech recognition
using Connectionist Temporal Classification (CTC) loss
(Graves et al., 2006). In this setup, we predict a distribu-
tion over phonemes for each input frame in a non autore-

(Katharopoulos et al., 2020)

François Fleuret Fast Attention Models 23 / 24

We need more fast deep models:

• Lots of promising applications of ML involve very large signals (particle
physics, astronomy, microscopy, satellite imaging).

• The trend toward larger models does not seem to slow down.
• Attention mechanisms provide a natural mean to dynamically allocate

bandwidth in a model.

François Fleuret Fast Attention Models 24 / 24

The end

References

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners. CoRR, abs/2005.14165, 2020.

R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

K. Clark, U. Khandelwal, O. Levy, and C. Manning. What does BERT look at? An
analysis of BERT’s attention. CoRR, abs/1906.04341, 2019.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov. Transformer-XL:
Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages
2978–2988, Florence, Italy, July 2019. Association for Computational Linguistics.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are RNNs: Fast
autoregressive transformers with linear attention. In Proceedings of the
International Conference on Machine Learning (ICML), 2020. (to appear).

N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert
for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020.

P. Michel, O. Levy, and G. Neubig. Are sixteen heads really better than one? In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 14014–14024.
Curran Associates, Inc., 2019.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019.

S. Sukhbaatar, E. Grave, P. Bojanowski, and A. Joulin. Adaptive attention span in
transformers. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 331–335, Florence, Italy, July 2019. Association for
Computational Linguistics.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

A. Vyas, A. Katharopoulos, and F. Fleuret. Fast transformers with clustered attention.
CoRR, abs/2007.04825, 2020.

O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat. Q8BERT: quantized 8bit BERT.
CoRR, abs/1910.06188, 2019.

	Attention Layers
	Transformers
	Linear Attention

