
THE UTILITY OF TRANSFORMERS

François Fleuret

Deep convolutional models

The key technology of “modern AI” are the deep convolutional models.

◦ They are powerful function approximators.
◦ Scale well with data set size and computation.
◦ Fitting for hierarchical signal structures.

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

Neocognitron (Fukushima, 1980)

François Fleuret The utility of Transformers 1 / 42

Deep convolutional models

A convolution applies the same linear operation at every location in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient for image or sound processing where the

signal is stationary and local structures are very informative.

François Fleuret The utility of Transformers 2 / 42

Deep convolutional models

A convolution applies the same linear operation at every location in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient for image or sound processing where the

signal is stationary and local structures are very informative.

François Fleuret The utility of Transformers 2 / 42

Deep convolutional models

A convolution applies the same linear operation at every location in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient for image or sound processing where the

signal is stationary and local structures are very informative.

François Fleuret The utility of Transformers 2 / 42

Deep convolutional models

A convolution applies the same linear operation at every location in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient for image or sound processing where the

signal is stationary and local structures are very informative.

François Fleuret The utility of Transformers 2 / 42

Deep convolutional models

A convolution applies the same linear operation at every location in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient for image or sound processing where the

signal is stationary and local structures are very informative.

François Fleuret The utility of Transformers 2 / 42

Attention mechanisms

However some tasks involve more than hierarchical structures, e.g. translation:

“An apple that had been on the tree in the garden for weeks had
finally been picked up.”
“Une pomme qui était sur l’arbre du jardin depuis des semaines
avait finalement été ramassée.”

It has motivated the development of attention-based processing to transport
information from parts of the signal to other parts dynamically identified.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

François Fleuret The utility of Transformers 3 / 42

Attention mechanisms

However some tasks involve more than hierarchical structures, e.g. translation:

“An apple that had been on the tree in the garden for weeks had
finally been picked up.”
“Une pomme qui était sur l’arbre du jardin depuis des semaines
avait finalement été ramassée.”

It has motivated the development of attention-based processing to transport
information from parts of the signal to other parts dynamically identified.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

François Fleuret The utility of Transformers 3 / 42

Attention mechanisms

Given a query sequence Q, a key sequence K , and a value sequence V , compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y .

A = softmaxrow
(QK>
√d

)
Y = AV

V

Q

A

K

Y

François Fleuret The utility of Transformers 4 / 42

Attention mechanisms

Given a query sequence Q, a key sequence K , and a value sequence V , compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y .

A = softmaxrow
(QK>
√d

)
Y = AV

V

Q

A

K

Y

François Fleuret The utility of Transformers 4 / 42

Attention mechanisms

Given a query sequence Q, a key sequence K , and a value sequence V , compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y .

A = softmaxrow
(QK>
√d

)
Y = AV

V

Q

A

K

Y

François Fleuret The utility of Transformers 4 / 42

Attention mechanisms

Given a query sequence Q, a key sequence K , and a value sequence V , compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y .

A = softmaxrow
(QK>
√d

)
Y = AV

V

Q

A

K

Y

François Fleuret The utility of Transformers 4 / 42

Attention mechanisms

Given a query sequence Q, a key sequence K , and a value sequence V , compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y .

A = softmaxrow
(QK>
√d

)
Y = AV

V

Q

A

K

Y

François Fleuret The utility of Transformers 4 / 42

Attention mechanisms

Given a query sequence Q, a key sequence K , and a value sequence V , compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y .

A = softmaxrow
(QK>
√d

)
Y = AV

V

Q

A

K

Y

François Fleuret The utility of Transformers 4 / 42

Attention mechanisms

K

Q

V

·> softmax A · Y

A = softmaxrow
(QK>
√d

)
Y = AV .

Single-head attention operation

François Fleuret The utility of Transformers 5 / 42

Attention mechanisms

A standard attention layer takes as input two sequences X and X ′ and computes

K = XWK>

V = X ′WV>

Q = X ′WQ>

A = softmaxrow
(QK>
√d

)
Y = AV

X

Q K V

A

Y

XX ′

Q K V

A

Y

When X = X ′, this is self attention, otherwise cross attention.

François Fleuret The utility of Transformers 6 / 42

Attention mechanisms

A standard attention layer takes as input two sequences X and X ′ and computes

K = XWK>

V = X ′WV>

Q = X ′WQ>

A = softmaxrow
(QK>
√d

)
Y = AV

X

Q K V

A

Y

XX ′

Q K V

A

Y

When X = X ′, this is self attention

, otherwise cross attention.

François Fleuret The utility of Transformers 6 / 42

Attention mechanisms

A standard attention layer takes as input two sequences X and X ′ and computes

K = XWK>

V = X ′WV>

Q = X ′WQ>

A = softmaxrow
(QK>
√d

)
Y = AV

X

Q K V

A

Y

XX ′

Q K V

A

Y

When X = X ′, this is self attention, otherwise cross attention.

François Fleuret The utility of Transformers 6 / 42

Attention mechanisms

It may be useful to mask the attention matrix, for instance in the case of

self-attention, for computational reasons, or to make the model causal for

auto-regression.

keys

q
u
e
r
ie
s

Full attention

(0)

(0)

keys

q
u
e
r
ie
s

Local attention

|i − j| > ∆⇒ Ai,j = 0

(0)

keys

q
u
e
r
ie
s

Causal attention

j > i⇒ Ai,j = 0

François Fleuret The utility of Transformers 7 / 42

Toy seq2seq example

Consider a task with 1d sequences composed of two triangles and two rectangles,

where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret The utility of Transformers 8 / 42

Toy seq2seq example

Consider a task with 1d sequences composed of two triangles and two rectangles,

where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret The utility of Transformers 8 / 42

Toy seq2seq example

Consider a task with 1d sequences composed of two triangles and two rectangles,

where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret The utility of Transformers 8 / 42

Toy seq2seq example

Consider a task with 1d sequences composed of two triangles and two rectangles,

where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret The utility of Transformers 8 / 42

Toy seq2seq example

Consider a task with 1d sequences composed of two triangles and two rectangles,

where the goal is to average heights in each pair of shapes.

Input Target

François Fleuret The utility of Transformers 8 / 42

Toy seq2seq example

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

François Fleuret The utility of Transformers 9 / 42

Toy seq2seq example

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(5): ReLU()
(6): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(7): ReLU()
(8): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

François Fleuret The utility of Transformers 10 / 42

Toy seq2seq example

The poor performance of this model is not surprising given its inability to channel

information from “far away” in the signal.

More layers, global averaging, or fully connected layers could possibly solve the

problem. However it is more natural to equip the model with the ability to fetch

information from parts of the signal that it actively identifies as relevant.

This is exactly what an attention layer does.

François Fleuret The utility of Transformers 11 / 42

Toy seq2seq example

class SelfAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, key_dim):

super().__init__()
self.conv_Q = nn.Conv1d(in_dim, key_dim, kernel_size = 1, bias = False)
self.conv_K = nn.Conv1d(in_dim, key_dim, kernel_size = 1, bias = False)
self.conv_V = nn.Conv1d(in_dim, out_dim, kernel_size = 1, bias = False)

def forward(self, x):
Q = self.conv_Q(x)
K = self.conv_K(x)
V = self.conv_V(x)
A = torch.einsum(’nct,ncs->nts’, Q, K).softmax(2)
y = torch.einsum(’nts,ncs->nct’, A, V)
return y

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): SelfAttentionLayer(in_channels=64, out_channels=64, key_channels=64)
(5): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(6): ReLU()
(7): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

François Fleuret The utility of Transformers 12 / 42

Toy seq2seq example

class SelfAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, key_dim):

super().__init__()
self.conv_Q = nn.Conv1d(in_dim, key_dim, kernel_size = 1, bias = False)
self.conv_K = nn.Conv1d(in_dim, key_dim, kernel_size = 1, bias = False)
self.conv_V = nn.Conv1d(in_dim, out_dim, kernel_size = 1, bias = False)

def forward(self, x):
Q = self.conv_Q(x)
K = self.conv_K(x)
V = self.conv_V(x)
A = torch.einsum(’nct,ncs->nts’, Q, K).softmax(2)
y = torch.einsum(’nts,ncs->nct’, A, V)
return y

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): SelfAttentionLayer(in_channels=64, out_channels=64, key_channels=64)
(5): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(6): ReLU()
(7): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

François Fleuret The utility of Transformers 12 / 42

Toy seq2seq example

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100

0

5

10

15

20

25

Input

Output

0 20 40 60 80 100
0

20

40

60

80

100

François Fleuret The utility of Transformers 13 / 42

Transformers

The standard transformer model combines a stack of self-attention layers in an

encoder, and a stack of self-attention and cross-attention layers in a decoder.

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

(Vaswani et al., 2017)

François Fleuret The utility of Transformers 14 / 42

Transformers

Transformers exhibit extremely good transfer capabilities and scale well.

Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy
validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
observed in [KMH+20] continues for an additional two orders of magnitude with only small deviations from the
predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.

Setting PTB

SOTA (Zero-Shot) 35.8a

GPT-3 Zero-Shot 20.5

Table 3.1: Zero-shot results on PTB language modeling dataset. Many other common language modeling datasets
are omitted because they are derived from Wikipedia or other sources which are included in GPT-3’s training data.
a[RWC+19]

3.1 Language Modeling, Cloze, and Completion Tasks

In this section we test GPT-3’s performance on the traditional task of language modeling, as well as related tasks
that involve predicting a single word of interest, completing a sentence or paragraph, or choosing between possible
completions of a piece of text.

3.1.1 Language Modeling

We calculate zero-shot perplexity on the Penn Tree Bank (PTB) [MKM+94] dataset measured in [RWC+19]. We omit
the 4 Wikipedia-related tasks in that work because they are entirely contained in our training data, and we also omit the
one-billion word benchmark due to a high fraction of the dataset being contained in our training set. PTB escapes these
issues due to predating the modern internet. Our largest model sets a new SOTA on PTB by a substantial margin of 15
points, achieving a perplexity of 20.50. Note that since PTB is a traditional language modeling dataset it does not have
a clear separation of examples to define one-shot or few-shot evaluation around, so we measure only zero-shot.

3.1.2 LAMBADA

The LAMBADA dataset [PKL+16] tests the modeling of long-range dependencies in text – the model is asked to
predict the last word of sentences which require reading a paragraph of context. It has recently been suggested that the
continued scaling of language models is yielding diminishing returns on this difficult benchmark. [BHT+20] reflect on
the small 1.5% improvement achieved by a doubling of model size between two recent state of the art results ([SPP+19]

11

(Brown et al., 2020)

All SoTA methods across NLP tasks are transformer-based, and these models are

getting on par or SoTA in computer vision.

François Fleuret The utility of Transformers 15 / 42

Transformers

Transformers exhibit extremely good transfer capabilities and scale well.

Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy
validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
observed in [KMH+20] continues for an additional two orders of magnitude with only small deviations from the
predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.

Setting PTB

SOTA (Zero-Shot) 35.8a

GPT-3 Zero-Shot 20.5

Table 3.1: Zero-shot results on PTB language modeling dataset. Many other common language modeling datasets
are omitted because they are derived from Wikipedia or other sources which are included in GPT-3’s training data.
a[RWC+19]

3.1 Language Modeling, Cloze, and Completion Tasks

In this section we test GPT-3’s performance on the traditional task of language modeling, as well as related tasks
that involve predicting a single word of interest, completing a sentence or paragraph, or choosing between possible
completions of a piece of text.

3.1.1 Language Modeling

We calculate zero-shot perplexity on the Penn Tree Bank (PTB) [MKM+94] dataset measured in [RWC+19]. We omit
the 4 Wikipedia-related tasks in that work because they are entirely contained in our training data, and we also omit the
one-billion word benchmark due to a high fraction of the dataset being contained in our training set. PTB escapes these
issues due to predating the modern internet. Our largest model sets a new SOTA on PTB by a substantial margin of 15
points, achieving a perplexity of 20.50. Note that since PTB is a traditional language modeling dataset it does not have
a clear separation of examples to define one-shot or few-shot evaluation around, so we measure only zero-shot.

3.1.2 LAMBADA

The LAMBADA dataset [PKL+16] tests the modeling of long-range dependencies in text – the model is asked to
predict the last word of sentences which require reading a paragraph of context. It has recently been suggested that the
continued scaling of language models is yielding diminishing returns on this difficult benchmark. [BHT+20] reflect on
the small 1.5% improvement achieved by a doubling of model size between two recent state of the art results ([SPP+19]

11

(Brown et al., 2020)

All SoTA methods across NLP tasks are transformer-based, and these models are

getting on par or SoTA in computer vision.

François Fleuret The utility of Transformers 15 / 42

Transformers

Large language models have been shown to exhibit some “zero shot learning”

capabilities when they are properly “primed” (Brown et al., 2020).

For instance using HuggingFace’s gpt2-xlmodel with 1.6B parameters, we can get

these sentence completions, where the priming text is between <>:

<Cherry is red, lettuce is green, lemon is> yellow, and orange is blue.

<Cherry is sweet, lettuce is bland, lemon is> sour, and orange is bitter.

<Cherry is a fruit, lettuce is a vegetable, lemon is> a fruit, and so on.

François Fleuret The utility of Transformers 16 / 42

Transformers

Input: I was supposed to start writing the paper at 5:00 PM. But then I
started playing with this cool new language model for 10 minutes. 10

minutes later, it's suddenly 9:30 PM!

Model Output: This joke is about how time flies when you're having fun.
The person was supposed to start writing a paper at 5:00 PM, but they

started playing with a language model instead. They thought they were

only playing with it for 10 minutes, but it was actually 4.5 hours.

I will explain these jokes:
(1) The problem with kleptomaniacs is that they always take things literally.
Explanation: This joke is wordplay. Someone who "takes things literally" is someone who doesn't fully understand social cues and context, which is a negative trait.
But the definition of kleptomania is someone who literally takes things.
(2) Always borrow money from a pessimist. They’ll never expect it back.
Explanation: Most people expect you to pay them back when you borrow money, however a pessimist is someone who always assumes the worst, so if you borrow money from
them, they will expect that you won't pay them back anyways.

Input: I was going to fly to visit my family on April 6th. My mom said
"Oh great, your step dad's poetry reading is that night!" So now I'm

flying in on April 7th.

Model Output: The joke is that the speaker's mother is trying to get
them to go to their step dad's poetry reading, but the speaker doesn't

want to go, so they are changing their flight to the day after the

poetry reading.

Input: I think I understand why me and my partner are such a good match.
I get excited when I smell food and become super alert when the

doorbell rings. My girlfriend Shelley becomes ecstatic when she sees a

person who she just saw 5 hours ago.

Model Output: This joke is about dogs. Dogs get excited when they smell
food and when the doorbell rings. The girlfriend is excited to see

someone she just saw 5 hours ago, which is a trait of dogs.

Input: Reading "War and Peace" doesn't scare me. I once had to review the
CL for my intern's whole project on his final day!

Model Output: 'War and Peace' is a very long book, so reading it is a
daunting task. However, the speaker is saying they had to review the

code for their intern's project on their final day, which is even more

daunting.

Input: I tried 10,000 random restarts of my neural network, but I was
accused of overfitting. I guess no good seed goes unpunished.

Model Output: This joke is a pun. A neural network is a computer
program that can learn from data. A "seed" is a number that is used to

initialize a random number generator. A "good seed" is a number that

produces a good random number generator. The phrase "no good deed goes

unpunished" means that if you do something good, you will be punished

for it.

Input: What's the difference between a zebra and an umbrella? One is a
striped animal related to horses, another is a device you use to stop

the rain from falling on you.

Model Output: This joke is an anti-joke. The joke is that the answer
is obvious, and the joke is that you were expecting a funny answer.

Explaining a Joke

Input: When I found out my grandma was in the hospital I felt a
particular color. When someone cut me off in traffic I felt a

different color. What is the most likely color I would see if I

combined these two colors?

Model Output: The color that I felt when I found out my grandma was in
the hospital was likely a sad color, like blue. The color that I felt

when someone cut me off in traffic was likely an angry color, like

red. If I combined these two colors, I would likely see purple. The

answer is "purple".

I will explain how to make logical inferences:
(1) John wakes to the sound of his children giggling outside the door. They bust in and say "Happy Father's Day!" with a plate full of food. 2022 has been a great
year. Can we infer that John was born before the inauguration of Barack Obama?
Answer: We can infer that John is a father because of "his children". We can infer that the current year is 2022. Barack Obama was inaugurated in 2009, so it has been
about 13 years since Obama was inaugurated. John's children are old enough to speak, so if John were born after Obama's inauguration, he would have been younger than
10 when he had children. So, we can infer that John was born before Obama's inauguration. The answer is "yes".
(2) Sam sees a piano in the subway stations. Laughing, his friends prod him to play, saying "Remember how amazing your rendition of Chopsticks was at the Christmas
party?" Can we infer that John majored in piano at Juilliard?
Answer: Juilliard is a top school for music, so someone who majored in piano at Juilliard would be an expert pianist. "Chopsticks" is a very simple song to play on
the piano. His friends were therefore likely being sarcastic when they told him to play, which would imply that Sam was not an expert piano player. So it is unlikely
that Sam majored in piano at Juilliard. The answer is "no".

Input: Guido was writing a Python program. He keeps getting confused by
variable scope and looking it up on StackOverflow. Is it possible that

the Guido in the prompt refers to Guido van Rossum?

Model Output: Guido van Rossum is the creator of Python. He would not
need to look up variable scope on StackOverflow. The answer is "no".

Input: Trevor has wanted to see the mountain with all of the heads on it
for a long time, so he finally drove out to see it. What is the capital

of the state that is directly east of the state that Trevor is currently

in?

Model Output: The mountain with all of the heads on it is Mount
Rushmore. Mount Rushmore is in South Dakota. The state directly east of

South Dakota is Minnesota. The capital of Minnesota is St. Paul. The

answer is "St. Paul".

Input: Michael is at that really famous museum in France looking at
its most famous painting. However, the artist who made this painting

just makes Michael think of his favorite cartoon character from his

childhood. What was the country of origin of the thing that the

cartoon character usually holds in his hand?

Model Output: The most famous painting in the Louvre is the Mona
Lisa. The artist who made the Mona Lisa is Leonardo da Vinci. Leonardo

da Vinci is also the name of the main character in the cartoon Teenage

Mutant Ninja Turtles. Leonardo da Vinci is from Italy. The thing that

Leonardo da Vinci usually holds in his hand is a katana. The country

of origin of the katana is Japan. The answer is "Japan".

Inference Chaining

Input: Jennifer looked out her window and sees a really cool cloud below
her. She unbuckles her seatbelt and heads to the bathroom. Is Jennifer

probably traveling more than 300 miles per hour relative to the earth?

Model Output: 300 miles per hour is about 480 km/h. This is about the
speed of a commercial airplane. Clouds are usually below airplanes, so

Jennifer is probably on an airplane. The answer is "yes".

Figure 19: Each “Input” was independently prepended with the same 2-shot exemplar shown at the top, and
“Model Output” shows the greedy decoding output of PaLM 540B. The two exemplar jokes are known jokes
(explanations written by authors), while all evaluated jokes were written by the authors. Of course, these
jokes do share abstract premises with existing jokes (wordplay, reliability, humorous analogies, reversal-of-
expectations). The inference chaining examples were also written by the authors.

38

(Chowdhery et al., 2022)

François Fleuret The utility of Transformers 17 / 42

Transformers

Transformer Encoder

MLP
Head

Vision Transformer (ViT)

*

Linear Projection of Flattened Patches
* Extra learnable

 [c l ass] embedding

1 2 3 4 5 6 7 8 90Patch + Position
Embedding

Class
Bird
Ball
Car
...

Embedded
Patches

Multi-Head
Attention

Norm

MLP

Norm

+L x

+

Transformer Encoder

(Dosovitskiy et al., 2020)

François Fleuret The utility of Transformers 18 / 42

PICOCLVR

François Fleuret The utility of Transformers 19 / 42

PicoCLVR

The PicoCLVR is a toy task designed to assess the ability of an attention-based

auto-regressive model to generate an image composed of elements whose

positions are constrained by a series of NLP statements.

Each sample is generated by creating a 12× 16 image with up to 5 colored pixels
drawn at random locations, and then by sampling a few Boolean properties

regarding their placement.

Such a sample is encoded as a sequence of tokens for the properties first,

separated by a specific token, followed by the image encoded as a sequence of

pixels in raster-scan order.

François Fleuret The utility of Transformers 20 / 42

PicoCLVR

yellow right of red <sep> there is green <sep> black below red <sep> green
above yellow <sep> green left of red <sep> black left of red <sep> green left
of black <sep> black left of yellow white white white white white white
white white white white white white white white white white white white white
white white white white white white white white white white white white white
white green white white white white white white white white white white white
white white white white white white white white white white white white white
white white white white white white white white white white white white white
white white white white white white white white white white white white white
white white white white white white white white white white white yellow white
white white white white white white white white white white white white white
white white white white white white white white white white white white white
white red white white white white white white white white white white white
white white white white white white white white white white white white white
white white white white white white white white white white white white white
white white white white white white white white white white white white white
white white white black white white white white white white white white white
white white white white

François Fleuret The utility of Transformers 21 / 42

PicoCLVR

Training examples.

black below yellow <sep> black below green <sep> yellow right of green <sep>
yellow right of red <sep> red left of yellow <sep> yellow above black <sep>
green left of yellow <sep> yellow below green

green below red <sep> black right of green <sep> red left of black

François Fleuret The utility of Transformers 22 / 42

PicoCLVR

Training examples.

yellow right of red <sep> there is red

yellow right of red <sep> there is green <sep> black below red <sep> green
above yellow <sep> green left of red <sep> black left of red <sep> green left
of black <sep> black left of yellow

François Fleuret The utility of Transformers 23 / 42

PicoCLVR

Training examples.

blue left <sep> blue top <sep> there is blue

blue bottom <sep> there is black <sep> blue below green <sep> red right of
green <sep> blue below red <sep> red top

François Fleuret The utility of Transformers 24 / 42

PicoCLVR

We use a standard causal transformer encoder with the following

parameterization (38M parameters):

dim_model 512

dim_keys 64

dim_hidden 2048

nb_heads 8

nb_blocks 12

dropout 0.1

Training is done with 250k samples and the following setup:

nb_epochs 50

batch_size 25

optim adam

learning_rate 0.0001

learning_rate_schedule 10: 2e-5,30: 4e-6

François Fleuret The utility of Transformers 25 / 42

PicoCLVR

 1.13

 1.14

 1.15

 1.16

 1.17

 1.18

 1.19

 1.2

 1.21

 0 10 20 30 40 50

Epochs

Perplexity

train
test

François Fleuret The utility of Transformers 26 / 42

PicoCLVR

 0.1

 1

 10

 100

 0 10 20 30 40 50

Epochs

Missing properties (%)

François Fleuret The utility of Transformers 27 / 42

PicoCLVR

Test examples.

red above green <sep> green top <sep> blue right of red

there is red <sep> there is yellow <sep> there is blue

François Fleuret The utility of Transformers 28 / 42

PicoCLVR

Test examples.

red below yellow <sep> yellow below green <sep> green below blue <sep>

red right <sep> yellow left <sep> green right <sep> blue left

green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow

right of blue <sep> blue top

François Fleuret The utility of Transformers 29 / 42

WIND PREDICTION ON AIRPLANE TRAJECTORIES

François Fleuret The utility of Transformers 30 / 42

Wind prediction along airplane trajectories

◦ Wind conditions are very important for air traffic control.
◦ Measurements are available only a 2-3 times per days.
◦ Controllers often infer the wind conditions from the aircrafts behavior.
◦ Aircrafts broadcast every 4s their position, pressure, and air speed.

LAT [°]

44
45

46
47

48
49

LO
N [°

]

4

5

6

7

8

9

10

AL
T

[F
l]

0

50

100

150

200

250

300

350

400

44 45 46 47 48 49
LAT [°]

4

5

6

7

8

9

10

LO
N

[°
]

0 50 100
Speed Norm [kN]

0

100

200

300

400

AL
T

[F
L]

François Fleuret The utility of Transformers 31 / 42

Wind prediction along airplane trajectories

◦ Wind conditions are very important for air traffic control.
◦ Measurements are available only a 2-3 times per days.
◦ Controllers often infer the wind conditions from the aircrafts behavior.
◦ Aircrafts broadcast every 4s their position, pressure, and air speed.

LAT [°]

44
45

46
47

48
49

LO
N [°

]

4

5

6

7

8

9

10

AL
T

[F
l]

0

50

100

150

200

250

300

350

400

44 45 46 47 48 49
LAT [°]

4

5

6

7

8

9

10

LO
N

[°
]

0 50 100
Speed Norm [kN]

0

100

200

300

400

AL
T

[F
L]

François Fleuret The utility of Transformers 31 / 42

Wind prediction along airplane trajectories

Time

Space

FuturePast

Known Delay

François Fleuret The utility of Transformers 32 / 42

Wind prediction along airplane trajectories

Time

Space

Future

Past

Known Delay

François Fleuret The utility of Transformers 32 / 42

Wind prediction along airplane trajectories

Time

Space

FuturePastKnown Delay

François Fleuret The utility of Transformers 32 / 42

Wind prediction along airplane trajectories

Method MSE

k-NN 10.19

GKA 10.38

GKA + MLP 9.65

Transformer 9.12

François Fleuret The utility of Transformers 33 / 42

GEOMETRIC RADIANCE FIELD MODELING

François Fleuret The utility of Transformers 34 / 42

GeoNerf

◦ Given a series of images of a scene from different angles with their camera
calibration, build a view from a novel position.

◦ Deal with specularities and reflections by modeling the radiance field.

François Fleuret The utility of Transformers 35 / 42

GeoNerf

. . .

. . .

Attention

Attention

Auto-encoder

+

integration

François Fleuret The utility of Transformers 36 / 42

GeoNerf

. . .

. . .

Attention

Attention

Auto-encoder

+

integration

François Fleuret The utility of Transformers 36 / 42

GeoNerf

. . .

. . .

Attention

Attention

Auto-encoder

+

integration

François Fleuret The utility of Transformers 36 / 42

GeoNerf

. . .

. . .

Attention

Attention

Auto-encoder

+

integration

François Fleuret The utility of Transformers 36 / 42

GeoNerf

(video) (video) (video)

François Fleuret The utility of Transformers 37 / 42

./geonerf/Videos/fern.mp4
./geonerf/Videos/horns.mp4
./geonerf/Videos/lego.mp4

IMITATION LEARNING IN MINECRAFT

François Fleuret The utility of Transformers 38 / 42

MineRL Agent

◦ Image-based, first-person 3d perspective.

◦ Rich environment, short-term navigation constraints and trajectory control.
◦ Complex multi sub-tasked long-term planning.
◦ Learning a policy by imitation, from hundreds of recorded games.

(video)

François Fleuret The utility of Transformers 39 / 42

./videos/train_demo_x264_720p.mp4

MineRL Agent

. . .

Resnet

Attention

Attention

Linear

François Fleuret The utility of Transformers 40 / 42

MineRL Agent

. . .

Resnet

Attention

Attention

Linear

François Fleuret The utility of Transformers 40 / 42

MineRL Agent

(video)

François Fleuret The utility of Transformers 41 / 42

./videos/treechop_demo_x264_720p.mp4

Conclusion

◦ Transformers works well in many application domains.
◦ They scale very well.
◦ They can be pre-trained / fine-tuned.
◦ They are likely here to stay.

François Fleuret The utility of Transformers 42 / 42

Questions?

References
T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,

D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,

C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models arefew-shot learners. CoRR, abs/2005.14165, 2020.
A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. Chung,

C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes,

Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,

J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev,

H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan,

H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. Dai, T. Pillai,

M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta,

M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and

N. Fiedel. Palm: Scaling language modeling with pathways. CoRR, abs/2204.02311, 2022.
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16words: Transformers for image recognition at scale. CoRR, abs/2010.11929, 2020.
K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism ofpattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202,
April 1980.

M. Johari, Y. Lepoittevin, and F. Fleuret. GeoNeRF: generalizing nerf with geometry priors. In
Proceedings of the IEEE international conference on Computer Vision and Pattern Recognition
(CVPR), 2022. To appear.

A. Kanervisto, S. Milani, K. Ramanauskas, N. Topin, Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, W. Yang,

W. Hong, Z. Huang, H. Chen, G. Zeng, Y. Lin, V. Micheli, E. Alonso, F. Fleuret, A. Nikulin,

Y. Belousov, O. Svidchenko, and A. Shpilman. MineRL Diamond 2021 Competition:Overview, results, and lessons learned. CoRR, abs/2202.10583, 2022.
A. Pannatier, R. Picatoste, and F. Fleuret. Efficient wind speed nowcasting withGPU-accelerated nearest neighbors algorithm. In Proceedings of the SIAM International
Conference on Data Mining (SDM), 2022. To appear.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin.Attention is all you need. CoRR, abs/1706.03762, 2017.

