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Given i.i.d training samples x1,. ..,xN we want
to fit a model pθ(x,z) to it, maximizing∑

n

log pθ(xn).

If we do not have an analytical form of themarginal
pθ(xn) but only the expression of pθ(xn,z), we
can get an estimate of the marginal by sampling
z with any distribution q

pθ(xn) =

∫
z
pθ(xn,z)dz

=

∫
z

pθ(xn,z)

q(z)
q(z)dz

=EZ∼q(z)

[
pθ(xn,Z)

q(Z)

]
.

So if we sample a Z with q and maximize

pθ(xn,Z)

q(Z)
,

we do maximize pθ(xn) on average.
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But we want to maximize
∑

n log pθ(xn). If we
use the log of the previous expression, we can
decompose its average value as

EZ∼q(z)

[
log

pθ(xn,Z)

q(Z)

]
=EZ∼q(z)

[
log

pθ(Z | xn)pθ(xn)
q(Z)

]
=EZ∼q(z)

[
log

pθ(Z | xn)
q(Z)

]
+log pθ(xn)

=−DKL(q(z)∥pθ(z | xn))+log pθ(xn).

Hence this does not maximize log pθ(xn) on av-
erage, but a lower bound of it, since the KL di-
vergence is non-negative. And since this maxi-
mization pushes that KL term down, it also aligns
pθ(z | xn) and q(z), andwemay get aworse pθ(xn)
to bring pθ(z | xn) closer to q(z).

However, all this analysis is still valid if q is a
parameterized function qα(z | xn) of xn. In that
case, if we optimize θ and α to maximize

EZ∼qα(z|xn)

[
log

pθ(xn,Z)

qα(Z | xn)

]
,

it maximizes log pθ(xn) and brings qα(z | xn) close
to pθ(z | xn).
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A point that may be important in practice is

EZ∼qα(z|xn)

[
log

pθ(xn,Z)

qα(Z | xn)

]
=EZ∼qα(z|xn)

[
log

pθ(xn |Z)pθ(Z)

qα(Z | xn)

]
=EZ∼qα(z|xn) [log pθ(xn |Z)]

−DKL(qα(z | xn)∥pθ(z)).

This form is useful because for certain pθ and qα,
for instance if they are Gaussian, the KL term
can be computed exactly instead of through sam-
pling, which removes one source of noise in the
optimization process.
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