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Given ii.d training samples x1,...,2 Ny we want
to fit a model py(z, 2) to it, maximizing

Zlogpg(xn).

If we do not have an analytical form of the marginal
po(x,,) but only the expression of py(x,,2), we
can get an estimate of the marginal by sampling
z with any distribution ¢

po(an) = / po(in,2)dz

[

So if we sample a Z with ¢ and maximize

pg(l‘n,Z)
a(z)

we do maximize py(x, ) on average.



But we want to maximize ), log pg(z,,). If we
use the log of the previous expression, we can
decompose its average value as

p@(xnvz)
Bz~ate) [l"g 4(2) ]

Z | xn)pﬁ(xn)]
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po(Z | xn)
q(Z)

= —Dii(q(2) | po(z | 2n)) +10g po(an).

— By [log ol

=Ezq02) [log ] +log pg(xn)

Hence this does not maximize log py(x,,) on av-
erage, but a lower bound of it, since the KL di-
vergence is non-negative. And since this maxi-
mization pushes that KL term down, it also aligns

po(z | z5,) and ¢(z), and we may get a worse pg(z,,)
to bring py(z | z,) closer to ¢(z).

However, all this analysis is still valid if g is a
parameterized function ¢, (z | z,) of ;. In that
case, if we optimize 6 and « to maximize

pg(.%’n,Z):|
4a(Z | zn) ]’

it maximizes log pg(x,,) and brings ¢, (z | x,,) close
to pg(z | zp).

IE)qua (z|zn) |:10g



A point that may be important in practice is

Q(X(Z | xn)
Tn | Z)po(Z
=Bz gaelon) [10% pa(qa(|z |)f:)( )]
= EZNqa(zkrn) [logpe(fb”n | Z)]
— Dk (qalz | 2n) [ po(2)).

This form is useful because for certain py and g,
for instance if they are Gaussian, the KL term
can be computed exactly instead of through sam-
pling, which removes one source of noise in the
optimization process.
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