The Evidence Lower Bound

François Fleuret

March 2, 2024

Given i.i.d training samples x_1, \ldots, x_N we want to fit a model $p_{\theta}(x, z)$ to it, maximizing

$$\sum_{n} \log p_{\theta}(x_n).$$

If we do not have an analytical form of the marginal $p_{\theta}(x_n)$ but only the expression of $p_{\theta}(x_n, z)$, we can get an estimate of the marginal by sampling z with any distribution q

$$p_{\theta}(x_n) = \int_z p_{\theta}(x_n, z) dz$$
$$= \int_z \frac{p_{\theta}(x_n, z)}{q(z)} q(z) dz$$
$$= \mathbb{E}_{Z \sim q(z)} \left[\frac{p_{\theta}(x_n, Z)}{q(Z)} \right].$$

So if we sample a Z with q and maximize

$$\frac{p_{\theta}(x_n, Z)}{q(Z)},$$

we do maximize $p_{\theta}(x_n)$ on average.

But we want to maximize $\sum_{n} \log p_{\theta}(x_n)$. If we use the log of the previous expression, we can decompose its average value as

$$\begin{split} & \mathbb{E}_{Z \sim q(z)} \left[\log \frac{p_{\theta}(x_n, Z)}{q(Z)} \right] \\ &= \mathbb{E}_{Z \sim q(z)} \left[\log \frac{p_{\theta}(Z \mid x_n) p_{\theta}(x_n)}{q(Z)} \right] \\ &= \mathbb{E}_{Z \sim q(z)} \left[\log \frac{p_{\theta}(Z \mid x_n)}{q(Z)} \right] + \log p_{\theta}(x_n) \\ &= -\mathbb{D}_{\mathsf{KL}}(q(z) \| p_{\theta}(z \mid x_n)) + \log p_{\theta}(x_n). \end{split}$$

Hence this does not maximize $\log p_{\theta}(x_n)$ on average, but a *lower bound* of it, since the KL divergence is non-negative. And since this maximization pushes that KL term down, it also aligns $p_{\theta}(z \mid x_n)$ and q(z), and we may get a worse $p_{\theta}(x_n)$ to bring $p_{\theta}(z \mid x_n)$ closer to q(z).

However, all this analysis is still valid if q is a parameterized function $q_{\alpha}(z \mid x_n)$ of x_n . In that case, if we optimize θ and α to maximize

$$\mathbb{E}_{Z \sim q_{\alpha}(z|x_n)} \left[\log \frac{p_{\theta}(x_n, Z)}{q_{\alpha}(Z \mid x_n)} \right],$$

it maximizes $\log p_{\theta}(x_n)$ and brings $q_{\alpha}(z \mid x_n)$ close to $p_{\theta}(z \mid x_n)$. A point that may be important in practice is

$$\mathbb{E}_{Z \sim q_{\alpha}(z|x_{n})} \left[\log \frac{p_{\theta}(x_{n}, Z)}{q_{\alpha}(Z \mid x_{n})} \right]$$

= $\mathbb{E}_{Z \sim q_{\alpha}(z|x_{n})} \left[\log \frac{p_{\theta}(x_{n} \mid Z)p_{\theta}(Z)}{q_{\alpha}(Z \mid x_{n})} \right]$
= $\mathbb{E}_{Z \sim q_{\alpha}(z|x_{n})} \left[\log p_{\theta}(x_{n} \mid Z) \right]$
- $\mathbb{D}_{\mathsf{KL}}(q_{\alpha}(z \mid x_{n}) || p_{\theta}(z)).$

This form is useful because for certain p_{θ} and q_{α} , for instance if they are Gaussian, the KL term can be computed exactly instead of through sampling, which removes one source of noise in the optimization process.