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Information Theory is awesome so here is a TL;DR
about Shannon’s entropy.

The field is originally about quantifying the amount
of “information” contained in a signal and how
much can be transmitted under certain conditions.

What makes it awesome is that it is very intuitive,
and like thermodynamics in Physics, it gives exact
bounds about what is possible or not.

1 Shannon’s Entropy

Shannon’s entropy is the key concept from which
everything is defined.

Imagine that you have a distribution of probabil-
ities p on a finite set of symbols, and that you
generate a stream of symbols by sampling them
one after another independently with that distri-
bution.

To transmit that stream, for instance with bits
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over a communication line, you can design a cod-
ing that takes into account that the symbols are
not all as probable, and decode on the other side.

For instance if P(′A′) = 1/2, P(′B′) = 1/4, and
P(′C ′) = 1/4 you would transmit “0” for a “A” and
“10” for a “B” and “11” for a “C”, 1.5 bits on average.

If the symbol is always the same, you transmit
nothing, if they are equiprobable you need log2(nb
symbols) etc.

Shannon’s Entropy (in base 2) is the minimum
number of bits you have to emit on average per
symbol to transmit that stream.

It has a simple analytical form:

H(p) =−
∑
k

p(k)log2p(k)

where by convention 0log20 = 0.

It is often seen as a measure of randomness since
the more deterministic the distribution is, the less
you have to emit.

The examples above correspond to ”Huffman cod-
ing”, which reaches the Entropy bound only for
some distributions. A more sophisticated scheme
called ”Arithmetic coding” does it always.

From this perspective, many quantities have an
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intuitive value. Consider for instance sending
pairs of symbols (X,Y ).

If these two symbols are independent, you cannot
do better than sending one and the other sepa-
rately, hence

H(X,Y ) =H(X)+H(Y ).

However, imagine that the second symbol is a
function of the first Y=f(X). You just have to send
X since Y can be computed from it on the other
side.

Hence in that case

H(X,Y ) =H(X).

An associated quantity is the mutual information
between two random variables, defined with

I(X;Y ) =H(X)+H(Y )−H(X,Y ),

that quantifies the amount of information shared
by the two variables.
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2 Conditional Entropy

Conditional entropy is the average of the entropy
of the conditional distribution:

H(X | Y ) =
∑
y

P(Y = y)H(X | Y = y)

with

H(X | Y = y)

=
∑
x

P(X = x | Y = y)logP(X = x | Y = y)

Intuitively it is the [minimum average] number of
bits required to describe X given that Y is known.

So in particular, if X and Y are independent, get-
ting the value of Y does not help at all, so you
still have to send all the bits for X , hence

H(X | Y ) =H(X),

and if X is a deterministic function of Y then

H(X | Y ) = 0.

And if you send the bits for Y and then the bits to
describe X given that Y , you have sent (X,Y ),
hence the chain rule:

H(X,Y ) =H(Y )+H(X | Y ).
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And then we get

I(X;Y ) =H(X)+H(Y )−H(X,Y )

=H(X)+H(Y )−(H(Y )+H(X | Y ))

=H(X)−H(X | Y ).

3 Kullback-Leibler divergence

Imagine that you encode your stream thinking it
comes from distribution q while it comes from p.
You would emit more bits than the optimal H(p),
and that excess of bits is DKL(p||q) the Kullback-
Leibler divergence between p and q.

In particular if p= q

DKL(p∥q) = 0,

and if there is a symbolxwith q(x) = 0 and p(x)>
0, you cannot encode it and

DKL(p∥q) =+∞.

Its formal expression is

DKL(p∥q) =
∑
x

p(x)log

(
p(x)

q(x)

)
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that can be understood as a value called the cross-
entropy between p and q

H(p,q) =−
∑
x

p(x)logq(x)

minus the entropy of p

H(p) =−
∑
x

p(x)logp(x).

Notation horror: if X and Y are random variables
H(X,Y ) is the entropy of their joint law, and
if p and q are distributions, H(p,q) is the cross-
entropy between them.
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