On Random Variables

François Fleuret
February 12, 2024

Random variables (RV s) are central to any model of a random phenomenon, but their mathematical definition is unclear to most. This is an attempt at giving an intuitive understanding of their definition and utility.

1 Modeling randomness

To formalize something "random", the natural strategy is to define a distribution, that is, in the finite case, a list of values / probabilities. For instance, the head / tail result of a coin flipping would be

$$
\{(H, 0.5),(T, 0.5)\} .
$$

This is perfectly fine, until you have several such objects. To model two coins A and B, it seems intuitively okay: they have nothing to do with each other, they are "independent", so defining how they behave individually is sufficient.

2 Non-independent variables

The process to generate two random values can be such that they are related. Consider for instance that A is the result of flipping a coin, and B as *the inverse value of A^{*}.

Both A and B are legitimate RVs, a both have the same distribution (H, o.5) (T, o.5). So where is the information that they have a relation?

With models of the respective distributions of A and B, this is nowhere. This can be fixed in some way by specifying the distribution of the pair (A, B). That would be here
$\{(H / H, 0.0),(H / T, 0.5),(T / H, 0.5),(T / T, 0.0)\}$.
The distribution of A and B individually are called the marginal distributions, and this is the joint distribution.

Note that the joint is a far richer object than the two marginals, and in general many different joints are consistent with given marginals. Here for instance, the marginals are the same as if A and B where two independent coins, even though they are not.

Even though this could somehow work, the notion of a RV here is very unclear: it is not simply a
distribution, and every time a new one is defined, it require the specification of the joint with all the variables already defined.

3 Random Variables

The actual definition of a RV is a bit technical. Intuitively, in some way, it consists of defining first "the source of all randomness", and then every RV is a deterministic function of it.

Formally, it relies first on the definition of a set Ω such that its subsets can be measured, with all the desirable properties, such as $\mu(\Omega)=1, \mu(\emptyset)=0$ and $A \cap B=\emptyset \Rightarrow \mu(A \cup B)=\mu(A)+\mu(B)$.
There is a technical point: for some Ω it may be impossible to define such a measure on all its subsets due to tricky infinity-related pathologies. So the set Σ of measurable subsets is explicitly specified and called a σ-algebra. In any practical situation this technicality does not matter, since Σ contains anything needed.
The triplet (Ω, Σ, μ) is a measured set.
Given such a measured set, an random variable X is a mapping from Ω into another set, and the probability that X takes the value x is the mea-
sure of the subset of Ω where X takes the value x :

$$
P(X=x)=\mu\left(X^{-1}(x)\right)
$$

You can imagine Ω as the square $[0,1]^{2}$ in \mathbb{R}^{2} with the usual geometrical area for μ.

For instance if the two coins A and B are flipped independently, we could picture possible random variables with the proper distribution as follows:
\square $A=$ head $/$ tail \square $B=$ head $/$ tail

And if A is flipped and B is the inverse of A, possible RV would be
Va $A=$ head/tail $\quad \square B=$ head/tail

