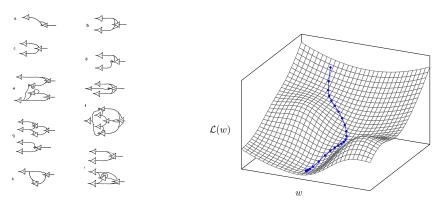
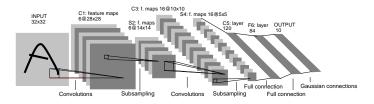
The Free Transformer

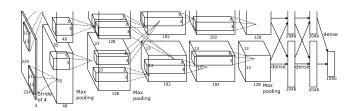
François Fleuret



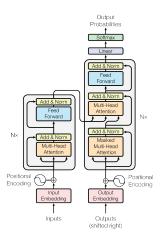
(McCulloch and Pitts, 1943)



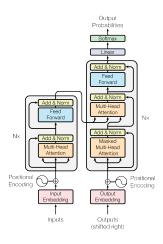
Convolutions (LeNet, 1989)



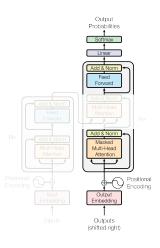
Very large models + GPUs (AlexNet, 2012)



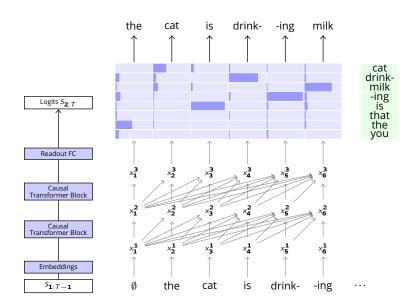
Transformer (Vaswani et al., 2017)



Transformer (Vaswani et al., 2017)



Decoder-only Transformer (Radford et al., 2018)



```
I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: gravity is proportional to the mass, 0:
```

```
I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: gravity is proportional to the mass, 0: physics.
```

```
I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: gravity is proportional to the mass, 0: physics.

I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0:
```

mathematics. I: squares are rectangles, 0:

```
I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: gravity is proportional to the mass, 0: physics.

I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0:
```

mathematics. I: squares are rectangles, O: mathematics.

```
I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: gravity is proportional to the mass, 0: physics.

I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: squares are rectangles, 0: mathematics.

I: I love apples, 0: positive. I: music is my passion, 0: positive. I: my job is boring, 0: negative. I: frozen pizzas are awesome, 0:
```

```
I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: gravity is proportional to the mass, 0: physics.

I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: squares are rectangles, 0: mathematics.

I: I love apples, 0: positive. I: music is my passion, 0: positive. I: my job is boring, 0: negative. I: frozen pizzas are awesome, 0: positive.
```

```
I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: gravity is proportional to the mass, 0: physics.

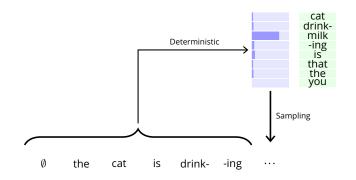
I: water boils at 100 degrees, 0: physics. I: the square root of two is irrational, 0: mathematics. I: the set of prime numbers is infinite, 0: mathematics. I: squares are rectangles, 0: mathematics.

I: I love apples, 0: positive. I: music is my passion, 0: positive. I: my job is boring, 0: negative. I: music is my passion, 0: positive.

I: I love apples, 0: positive. I: music is my passion, 0: positive. I: my job is boring, 0: negative. I: music is my passion, 0: positive. I: my job is boring, 0: negative. I: frozen pizzas taste like cardboard, 0:
```

```
I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, 0: mathematics. I: the set of prime numbers is infinite, 0:
mathematics. I: gravity is proportional to the mass, O: physics.
I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.
I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.
I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, 0: negative. I: frozen pizzas taste like cardboard, 0:
negative.
```

The problem with autoregression



The only sampling in a Transformer are the tokens.

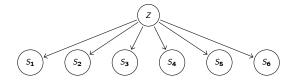
Consider a corpus of positive and negative online reviews.

$$Z \sim \mathcal{U}(\{-1,1\}), S \sim \mu_Z$$
.

An AR model has no way of implementing this factorized distribution, it cannot "decide" beforehand what type of review to generate.

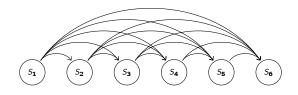
It would estimate on the fly the negativity / positivity of what it has written so far to be consistent.

The "true model" of a joint distribution, with latents, is usually simpler and more robust than the "latentless" AR model.



$$P(S_{t+1} = 1 \mid Z, S_1, \dots, S_t) = (1 - \epsilon)Z + \epsilon(1 - Z)$$

The "true model" of a joint distribution, with latents, is usually simpler and more robust than the "latentless" AR model.



$$P(X_{t+1} = 1 \mid X_1 = x_1, \dots, X_t = x_t) = \frac{\left(\frac{\epsilon}{1-\epsilon}\right)^{\sum_{s=1}^{t} x_s} (1-\epsilon)^t \epsilon + \left(\frac{1-\epsilon}{\epsilon}\right)^{\sum_{s=1}^{t} x_s} \epsilon^t (1-\epsilon)}{\left(\frac{\epsilon}{1-\epsilon}\right)^{\sum_{s=1}^{t} x_s} (1-\epsilon)^t + \left(\frac{1-\epsilon}{\epsilon}\right)^{\sum_{s=1}^{t} x_s} \epsilon^t}$$

We could prefix every training sample with a token ${\it Z}$ indicating if the review is positive or not.

We could prefix every training sample with a token *Z* indicating if the review is positive or not.

Reasoning post-training tries to address it unsupervised, however:

- + it requires a trained model,
- + current approaches cast it as reinforcement learning,
- + the conditionning variable are discrete tokens,
- + it cannot deal with stochastic responses.

We propose instead to let the model build latent variables

$$Y_r = f_r(S_1, ..., S_t, Y_1, ..., Y_{r-1}, Z_r; \theta)$$

where Z_r is sampled from a random generator. This can be interpreted as making decisions beside the token choices.

We propose instead to let the model build latent variables

$$Y_r = f_r(S_1, ..., S_t, Y_1, ..., Y_{r-1}, Z_r; \theta)$$

where Z_r is sampled from a random generator. This can be interpreted as making decisions beside the token choices.

Sampling from such a trained model is trivial: sample z, and run the AR process as usual to sample $P_{\theta}(S \mid Z = z)$.

Training, however, is far more involved.

Given a training sample s, we want to maximize

$$P_{\theta}(S = s) = \mathbb{E}_{z \sim P(Z)} \Big[P_{\theta}(S = s \mid Z = z) \Big]$$

Given a training sample s, we want to maximize

$$P_{\theta}(S = s) = \mathbb{E}_{z \sim P(Z)} \Big[P_{\theta}(S = s \mid Z = z) \Big]$$

Since $P_{\theta}(S = s \mid Z = z)$ is a full-fledged model, there is no closed form for $P_{\theta}(S = s)$, and numerical integration requires "good" Zs.

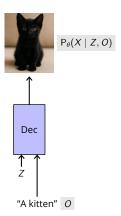
Given a training sample s, we want to maximize

$$P_{\theta}(S = s) = \mathbb{E}_{z \sim P(Z)} \Big[P_{\theta}(S = s \mid Z = z) \Big]$$

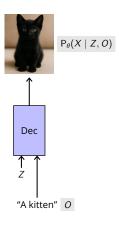
Since $P_{\theta}(S = s \mid Z = z)$ is a full-fledged model, there is no closed form for $P_{\theta}(S = s)$, and numerical integration requires "good" Zs.

The Variational Autoencoder proposed by Kingma and Welling (2013) provides a formal derivation to train a sampler $q_{\theta}(Z; S = s)$.

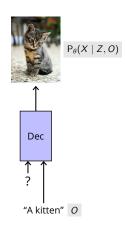
Inference

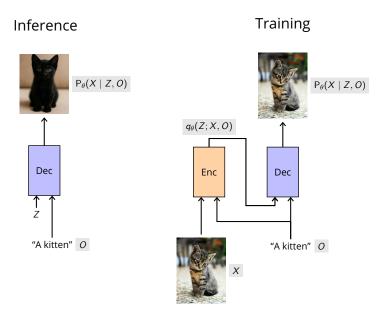


Inference



Training





$$\log \mathsf{P}_{\theta}(S=s)$$

$$\log \mathsf{P}_{ heta}(S=s)$$
 How bad the sampler is $\geq \log \mathsf{P}_{ heta}(S=s) - \mathbb{D}_{\mathsf{KL}}igg(q_{ heta}(Z;S=s) \, \Big\| \, \, \mathsf{P}_{ heta}(Z\mid S=s)igg)$

$$\log \mathsf{P}_{\theta}(S=s)$$
How bad the sampler is
$$\geq \log \mathsf{P}_{\theta}(S=s) - \mathbb{D}_{\mathsf{KL}}\Big(q_{\theta}(Z;S=s) \,\Big\|\,\, \mathsf{P}_{\theta}(Z\mid S=s)\Big)$$

$$= \mathbb{E}_{z\sim q_{\theta}(Z;S=s)}\left[\log \frac{\mathsf{P}_{\theta}(S=s,Z=z)}{q_{\theta}(Z=z;S=s)}\right]$$
"Evidence Lower Bound" (aka ELBO)

$$\log \mathsf{P}_{\theta}(S=s) = \underbrace{\mathsf{How bad the sampler is}}_{\mathsf{How bad the sampler is}} \\ \geq \log \mathsf{P}_{\theta}(S=s) - \mathbb{D}_{\mathsf{KL}} \Big(q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}_{\theta}(Z\mid S=s) \Big) \\ = \mathbb{E}_{z \sim q_{\theta}(Z;S=s)} \Big[\log \frac{\mathsf{P}_{\theta}(S=s,Z=z)}{q_{\theta}(Z=z;S=s)} \Big] \\ \underbrace{\mathsf{"Evidence Lower Bound" (aka ELBO)}}_{-\mathsf{cross-entropy}} + \underbrace{\mathsf{How much we cheat}}_{\mathsf{Evalue}(Z;S=s)} \Big[\log \mathsf{P}_{\theta}(S=s\mid Z=z) \Big] - \mathbb{D}_{\mathsf{KL}} \Big(q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}(Z) \Big) \\ = \mathbb{E}_{z \sim q_{\theta}(Z;S=s)} \Big[\log \mathsf{P}_{\theta}(S=s\mid Z=z) \Big] - \mathbb{D}_{\mathsf{KL}} \Big(q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}(Z) \Big) \\ = \mathbb{E}_{z \sim q_{\theta}(Z;S=s)} \Big[\log \mathsf{P}_{\theta}(S=s\mid Z=z) \Big] - \mathbb{D}_{\mathsf{KL}} \Big(q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}(Z) \Big) \\ = \mathbb{E}_{z \sim q_{\theta}(Z;S=s)} \Big[\log \mathsf{P}_{\theta}(S=s\mid Z=z) \Big] - \mathbb{D}_{\mathsf{KL}} \Big(q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}(Z) \Big) \\ = \mathbb{E}_{z \sim q_{\theta}(Z;S=s)} \Big[\log \mathsf{P}_{\theta}(S=s\mid Z=z) \Big] - \mathbb{D}_{\mathsf{KL}} \Big(q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}(Z) \Big) \\ = \mathbb{E}_{z \sim q_{\theta}(Z;S=s)} \Big[\log \mathsf{P}_{\theta}(S=s\mid Z=z) \Big] - \mathbb{D}_{\mathsf{KL}} \Big(q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}(Z) \Big) \\ = \mathbb{E}_{z \sim q_{\theta}(Z;S=s)} \Big[\log \mathsf{P}_{\theta}(S=s\mid Z=z) \Big] - \mathbb{D}_{\mathsf{KL}} \Big(q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}(Z) \Big) \\ = \mathbb{E}_{z \sim q_{\theta}(Z;S=s)} \Big[\log \mathsf{P}_{\theta}(S=s\mid Z=z) \Big] + \mathbb{D}_{\mathsf{KL}} \Big[q_{\theta}(Z;S=s) \, \Big\| \, \mathsf{P}(Z) \Big]$$

The quantity we maximize during training

The model $q_{\theta}(Z = z; S = s)$ can be envisioned as an encoder that extracts the necessary information from s.

E.g. "s is a negative review, θ should be improved for z = -1".

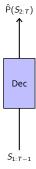
The model $q_{\theta}(Z = z; S = s)$ can be envisioned as an encoder that extracts the necessary information from s.

E.g. "s is a negative review, θ should be improved for z=-1".

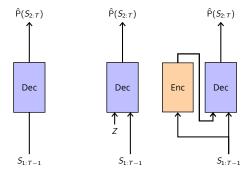
The term

$$\mathbb{D}_{\mathsf{KL}}ig(q_{ heta}(Z;S=s)\,\Big\|\,\,\mathsf{P}(Z)ig)$$

reflects how much information about *s* the encoder provides to the decoder, and must be controlled carefully during training.

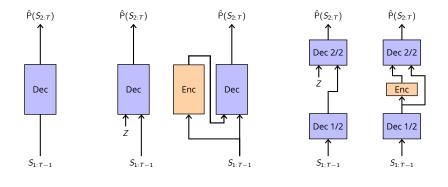


Decoder Transformer



Decoder Transformer

VAE + Transformer



Free Transformer

The Free Transformer 19

VAE + Transformer

Decoder Transformer

We use for Z a one-hot vector of dimension 2^{16} , comparable to the vocabulary size of 2^{17}

We use for Z a one-hot vector of dimension 2^{16} , comparable to the vocabulary size of 2^{17}

Given $L \in \mathbb{R}^H$, the "Binary Mapper" interprets them as bits logits and

- + Computes the distribution p over $\{0, \dots, 2^H 1\}$.
- + Samples $K \sim p$.
- + Outputs $Y_d = \delta_{d=K} + p_d \text{detach}(p_d)$.

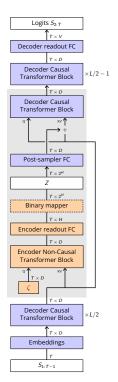
We use for Z a one-hot vector of dimension 2^{16} , comparable to the vocabulary size of 2^{17}

Given $L \in \mathbb{R}^H$, the "Binary Mapper" interprets them as bits logits and

- + Computes the distribution p over $\{0, \dots, 2^H 1\}$.
- + Samples $K \sim p$.
- + Outputs $Y_d = \delta_{d=K} + p_d \text{detach}(p_d)$.

The vector *L* is:

- + Constant zero for P(Z).
- + The output of the encoder for $q_{\theta}(Z; S = s)$.



The KL divergence can be expressed per token

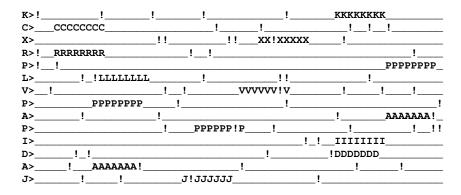
$$\mathbb{D}_{\mathsf{KL}}\Big(q(Z_t;S_1,\ldots,S_T)\,\Big\|\,\,\mathsf{P}(Z_t)\Big) = H\log 2 + \sum_{t=1}^{2^{t+1}} q(Z_t=z;S)\log q(Z_t=z;S).$$

The KL divergence can be expressed per token

$$\mathbb{D}_{\mathsf{KL}}\Big(q(Z_t;S_1,\ldots,S_T)\,\Big\|\,\,\mathsf{P}(Z_t)\Big) = H\log 2 + \sum_{t=1}^{2^n} q(Z_t=z;S)\log q(Z_t=z;S).$$

We use the free-bits method (Kingma et al., 2016), also per token

$$\mathcal{L}_{\mathsf{KL}} = rac{1}{T} \sum_{t=1}^{T} \mathsf{max} \left(0, \ \mathbb{D}_{\mathsf{KL}} \Big(q(Z_t; S_1, \dots, S_T) \, \Big\| \ \mathsf{P}(Z_t) \Big) - \kappa \Big).$$



Training Examples

T>	TTTTTTTT
T>	
T>	
T>	!
T>	!TTTTTTT
T>	TTTTTTTT

-	<u> </u>	1111111
7	'>	
7	'>	! TTTTTTT
7	>	!
2	'>	TTTTTTT

$$\kappa = \log(2)/64$$

F>		FFFFFF
F>	FFFFFFF	!!!
F>	FFFFFFF	!!!
F>		_FFFFFFF!!!
F>		!FFF!FFF

F>	!
F>	FFFFFF
F>	
F>	FFFFFF!
F>	FFFFFF

F>	
F>	!FF!FFFF
F>	FFFFFFF !
F>	
F>	FFFFFFF!!

 $\kappa = \log(2)/8$

J>JJJJJJJJ!!! J>!!!! J> JJJ!JJJJ	!JJJJJJJJ	!
J>!		!!!
J>!!!!!	!!	!!!_!!
J>!!	!	
J>JJJ!JJJ!_	!	!!!
J>JJ!JJJJ!_	!!!	!!!!!
J>JJJ!JJJJ!_	!!_	!!_!!!!!
J>!JJ!JJJJ!	!	!!!!!
J>JJJJJJJJ!!		!!!!!_
J>JJJJJJJJ!		
J>_JJJJJJJ!		
J>_JJJJJJJ!		
J>_JJJJJJJ!!	!!!!	!!!!

$$\kappa = \log(2)$$

0>	!!	!_	_!		!	.!	_!	!!
0>	00000							!
0>0!	_0_!!!	!_00_	!!0	0		!!	!_	!
0>	_!!		!		!_F	_! !!	!	
0>00	00!00!00_	!	_0_!			0!_	o	!
0>	0000	0_		_!			!!_!0	!
0>	00!0	0_	o	_!			!!!!0	!
0>	00!0	o_	o	_!		o	!!0	!
0>	0000	o_	o	_!			!!_!0	!
0>	0000	o_	o	_!			_!_!0	!
0>!_	00	!	00!0_	0!0		0	o_	!
0>0_!_	_000		0000_	0!0		0		_!!
0>!_	00		00	0!0		o	o_	
0>!_	00		00	0!0	o	o	o_	_!!
0>0 1	000	100 1	00	010		0	0	- 1

 $\kappa = 8\log(2)$

We benchmark the Free Transformer with the following configurations:

- + 1.5B model (Qwen like)
 - 28 layers, embedding / readout weight tying
 - 1536 model dimensions
 - GQA, 12 query heads, 2 key-value heads
 - 47B tokens (32 H100s for \approx 12 hours)
- + 8B model (Llama-3 like)
 - 32 layers
 - 4096 model dimensions
 - GQA, 32 query heads, 8 key-value heads
 - 200B tokens (256 H100s for \approx 24 hours), or with 1T tokens (5 days).

We benchmark the Free Transformer with the following configurations:

- + 1.5B model (Qwen like)
 - 28 layers, embedding / readout weight tying
 - 1536 model dimensions
 - GQA, 12 query heads, 2 key-value heads
 - 47B tokens (32 H100s for \approx 12 hours)
- + 8B model (Llama-3 like)
 - 32 layers
 - 4096 model dimensions
 - GQA, 32 query heads, 8 key-value heads
 - 200B tokens (256 H100s for \approx 24 hours), or with 1T tokens (5 days).

The dimension for Z is $2^{16} = 65536$, and the encoder transformer block requires $\approx 3\%$ more compute.

1.5B models (47B tokens)

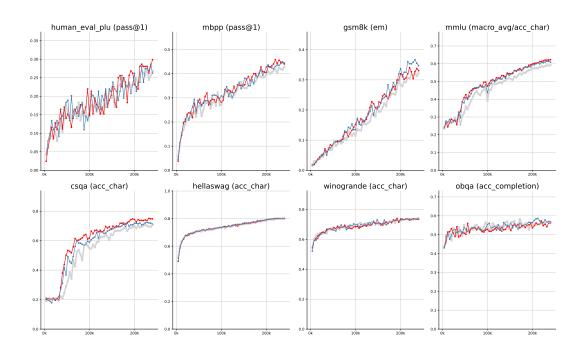
	Baseline	Free Transformer								
	Daseillie	1.	/4 bit	1.	/2 bit		1 bit	2 bits		
		Gene	rative coc	le/math	1			•		
human_eval_plu (pass@1)	0.055	0.079	+44.44%	0.079	+44.44%	0.085	+55.56%	0.085	+55.56%	
mbpp (pass@1)	0.112	0.144	+28.57%	0.148	+32.14%	0.152	+35.71%	0.122	+8.93%	
gsm8k (em)	0.025	0.028	+12.12%	0.027	+6.06%	0.033	+30.30%	0.027	+6.06%	
M	ulti-choice	e gener	al knowle	dge / co	ommon se	ense				
mmlu (macro_avg/acc_char)	0.252	0.265	+5.31%	0.261	+3.76%	0.254	+1.07%	0.257	+2.19%	
csqa (acc_char)	0.199	0.175	-11.93%	0.199	+0.00%	0.187	-6.17%	0.197	-0.82%	
hellaswag (acc_char)	0.593	0.591	-0.40%	0.594	+0.15%	0.592	-0.27%	0.595	+0.32%	
winogrande (acc_char)	0.603	0.604	+0.13%	0.598	-0.79%	0.600	-0.52%	0.597	-1.05%	
obqa (acc_completion)	0.446	0.450	+0.90%	0.468	+4.93%	0.460	+3.14%	0.490	+9.87%	
arc_challenge (acc_completion)	0.400	0.392	-1.93%	0.386	-3.43%	0.405	+1.29%	0.385	-3.65%	
arc_easy (acc_completion)	0.596	0.602	+0.92%	0.592	-0.64%	0.603	+1.06%	0.592	-0.71%	
piqa (acc_char)	0.734	0.736	+0.22%	0.738	+0.52%	0.734	+0.07%	0.733	-0.15%	
	Mu	lti-choi	ce text un	derstar	nding			•		
race.high (acc_char)	0.390	0.382	-2.20%	0.390	+0.00%	0.387	-0.81%	0.386	-1.03%	
race.middle (acc_char)	0.532	0.511	-3.93%	0.519	-2.49%	0.522	-1.83%	0.514	-3.40%	
boolq (acc_completion)	0.583	0.632	+8.39%	0.614	+5.35%	0.648	+11.12%	0.620	+6.29%	
			Culture							
nq (em)	0.081	0.069	-15.36%	0.073	-9.56%	0.075	-7.17%	0.071	-11.95%	
tqa (em)	0.205	0.191	-6.93%	0.190	-7.58%	0.200	-2.84%	0.197	-4.13%	

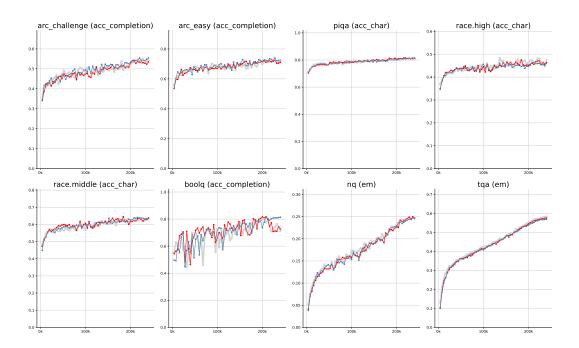
8B models (200B tokens)

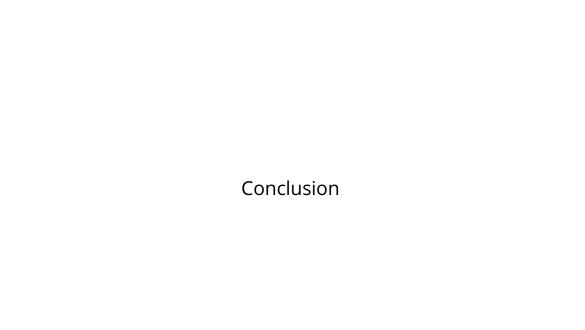
	Baseline	Free Transformer							
	Daseille	1.	/4 bit	1/2 bit		1 bit		2	bits
		Gene	rative coc	le/math	1			•	
human_eval_plu (pass@1)	0.159	0.171	+7.69%	0.189	+19.23%	0.165	+3.85%	0.177	+11.54%
mbpp (pass@1)	0.278	0.330	+18.71%	0.306	+10.07%	0.298	+7.19%	0.318	+14.39%
gsm8k (em)	0.086	0.079	-8.77%	0.095	+9.65%	0.104	+20.18%	0.096	+10.53%
M	ulti-choice	e gener	al knowle	dge / co	ommon se	ense			
mmlu (macro_avg/acc_char)	0.359	0.337	-6.13%	0.398	+10.97%	0.365	+1.81%	0.345	-4.00%
csqa (acc_char)	0.356	0.292	-17.93%	0.450	+26.21%	0.346	-2.99%	0.324	-8.97%
hellaswag (acc_char)	0.735	0.737	+0.26%	0.737	+0.26%	0.732	-0.45%	0.738	+0.39%
winogrande (acc_char)	0.680	0.667	-1.86%	0.664	-2.32%	0.664	-2.32%	0.667	-1.86%
obqa (acc_completion)	0.522	0.508	-2.68%	0.484	-7.28%	0.530	+1.53%	0.554	+6.13%
arc_challenge (acc_completion)	0.465	0.483	+3.87%	0.468	+0.55%	0.452	-2.95%	0.485	+4.24%
arc_easy (acc_completion)	0.677	0.676	-0.25%	0.665	-1.81%	0.668	-1.44%	0.679	+0.31%
piqa (acc_char)	0.774	0.780	+0.77%	0.782	+1.05%	0.785	+1.41%	0.793	+2.46%
	Mu	lti-choi	ce text un	dersta	nding			•	
race.high (acc_char)	0.433	0.447	+3.30%	0.443	+2.25%	0.444	+2.58%	0.435	+0.53%
race.middle (acc_char)	0.594	0.592	-0.35%	0.591	-0.47%	0.587	-1.17%	0.584	-1.64%
boolq (acc_completion)	0.705	0.632	-10.37%	0.632	-10.33%	0.687	-2.47%	0.671	-4.82%
			Culture						
nq (em)	0.181	0.183	+1.38%	0.167	-7.67%	0.173	-4.14%	0.168	-6.90%
tqa (em)	0.440	0.438	-0.28%	0.443	+0.80%	0.434	-1.19%	0.446	+1.45%

8B models (1T tokens)

	Final value					Average (last third)				
	Baseline	Free		nsform	er	Baseline	Free Transformer			
	Daseillie	1,	1/2 bit		1 bit		1/2 bit		1 bit	
Generative code/math										
human_eval_plu (pass@1)	0.268	0.299	+11.36%	0.262	-2.27%	0.245	0.256	+4.22%	0.241	-1.74%
mbpp (pass@1)	0.428	0.440	+2.80%	0.444	+3.74%	0.396	0.421	+6.08%	0.412	+4.04%
gsm8k (em)	0.321	0.331	+2.83%	0.347	+8.02%	0.280	0.296	+5.84%	0.313	+11.96%
	Multi-cl	noice g	eneral kno	owledge	e / commo	n sense			•	
mmlu (macro_avg/acc_char)	0.592	0.623	+5.20%	0.609	+2.88%	0.567	0.596	+5.16%	0.590	+4.19%
csqa (acc_char)	0.707	0.748	+5.79%	0.713	+0.81%	0.689	0.733	+6.28%	0.711	+3.18%
hellaswag (acc_char)	0.799	0.799	-0.01%	0.801	+0.30%	0.787	0.788	+0.18%	0.790	+0.37%
winogrande (acc_char)	0.739	0.735	-0.53%	0.740	+0.11%	0.725	0.727	+0.27%	0.728	+0.33%
obqa (acc_completion)	0.564	0.562	-0.35%	0.568	+0.71%	0.556	0.551	-0.86%	0.563	+1.33%
arc_challenge (acc_completion)	0.542	0.535	-1.42%	0.555	+2.22%	0.524	0.522	-0.40%	0.532	+1.57%
arc_easy (acc_completion)	0.721	0.711	-1.41%	0.724	+0.35%	0.706	0.711	+0.68%	0.717	+1.55%
piqa (acc_char)	0.805	0.812	+0.88%	0.815	+1.28%	0.802	0.807	+0.61%	0.804	+0.30%
		Multi-	choice tex	t unde	rstanding					
race.high (acc_char)	0.473	0.463	-2.06%	0.461	-2.42%	0.467	0.460	-1.55%	0.453	-3.00%
race.middle (acc_char)	0.632	0.634	+0.33%	0.639	+1.10%	0.623	0.624	+0.16%	0.628	+0.80%
boolq (acc_completion)	0.713	0.725	+1.63%	0.814	+14.06%	0.755	0.754	-0.10%	0.781	+3.42%
			Cu	ture						
nq (em)	0.248	0.247	-0.22%	0.245	-0.89%	0.229	0.227	-0.76%	0.228	-0.63%
tqa (em)	0.583	0.577	-1.00%	0.569	-2.28%	0.549	0.544	-0.90%	0.539	-1.85%







- + Seems to work.
- + In hindsight pretty obvious.
- + Lots of arbitrary design choices to ablate / improve.
- + May need a tailored optimization scheme.

Conclusion 32

- + Seems to work.
- + In hindsight pretty obvious.
- + Lots of arbitrary design choices to ablate / improve.
- + May need a tailored optimization scheme.
- + Unclear how it will hold on [very] large scale.
- + May have strengths not visible in current benchmarks.
- + Qualitative differences may justify more compute.

https://arxiv.org/abs/2510.17558 fleuret@meta.com

Conclusion 32

- D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes, Dec. 2013. arXiv:1312.6114 [stat].
- D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. **Improving Variational Inference with Inverse Autoregressive Flow**, Jan. 2016. arXiv:1606.04934 [cs].
- W. S. McCulloch and W. Pitts. **A logical calculus of the ideas immanent in nervous activity**. *The bulletin of mathematical biophysics*, 5(4):115–133, 1943.
- A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. **Improving language understanding by generative pre-training**. Technical report, OpenAI, 2018.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. **Attention Is All You Need**, Aug. 2017. arXiv:1706.03762 [cs].

Conclusion 34