Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--no_checkpoint", action="store_true", default=False)
70
71 parser.add_argument("--overwrite_results", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ##############################
85 # one-shot prediction
86
87 parser.add_argument("--oneshot", action="store_true", default=False)
88
89 parser.add_argument("--oneshot_input", type=str, default="head")
90
91 parser.add_argument("--oneshot_output", type=str, default="trace")
92
93 ######################################################################
94
95 args = parser.parse_args()
96
97 try:
98     os.mkdir(args.result_dir)
99 except FileExistsError:
100     if not args.overwrite_results:
101         print(f"result directory {args.result_dir} already exists")
102         exit(1)
103
104 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
105
106 if args.seed >= 0:
107     # torch.backends.cudnn.deterministic = True
108     # torch.backends.cudnn.benchmark = False
109     # torch.use_deterministic_algorithms(True)
110     torch.manual_seed(args.seed)
111     if torch.cuda.is_available():
112         torch.cuda.manual_seed_all(args.seed)
113
114 ######################################################################
115
116
117 def log_string(s):
118     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
119
120     if log_file is not None:
121         log_file.write(t + s + "\n")
122         log_file.flush()
123
124     print(t + s)
125     sys.stdout.flush()
126
127
128 for n in vars(args):
129     log_string(f"args.{n} {getattr(args, n)}")
130
131 ######################################################################
132
133
134 def random_order(result, fixed_len):
135     if args.random_regression_order:
136         order = torch.rand(result.size(), device=result.device)
137         order[:, :fixed_len] = torch.linspace(-2, -1, fixed_len, device=order.device)
138         return order.sort(1).indices
139     else:
140         return torch.arange(result.size(1)).unsqueeze(0).expand(result.size(0), -1)
141
142
143 def shuffle(x, order, reorder=False):
144     if x.dim() == 3:
145         order = order.unsqueeze(-1).expand(-1, -1, x.size(-1))
146     if reorder:
147         y = x.new(x.size())
148         y.scatter_(1, order, x)
149         return y
150     else:
151         return x.gather(1, order)
152
153
154 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
155 # tokens that should be generated
156
157
158 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
159     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
160         i = (ar_mask.sum(0) > 0).nonzero()
161         if i.min() > 0:
162             # Needed to initialize the model's cache
163             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
164         for s in range(i.min(), i.max() + 1):
165             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
166             logits = output[:, s]
167             if args.deterministic_synthesis:
168                 t_next = logits.argmax(1)
169             else:
170                 dist = torch.distributions.categorical.Categorical(logits=logits)
171                 t_next = dist.sample()
172             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
173
174
175 ######################################################################
176
177
178 def compute_perplexity(model, split="train"):
179     with torch.autograd.no_grad():
180         t = model.training
181         model.eval()
182
183         nb_samples, acc_loss = 0, 0.0
184
185         for input in task.batches(split=split):
186             input = input.to(device)
187             order = random_order(input, task.height * task.width)
188             input = shuffle(input, order)
189             output = model(mygpt.BracketedSequence(input), order=order).x
190             loss = F.cross_entropy(output.transpose(1, 2), input)
191             acc_loss += loss.item() * input.size(0)
192             nb_samples += input.size(0)
193
194         model.train(t)
195
196         return math.exp(min(100, acc_loss / nb_samples))
197
198
199 ######################################################################
200
201
202 def oneshot_policy_loss(mazes, output, policies, height, width):
203     masks = (mazes == maze.v_empty).unsqueeze(-1)
204     targets = policies.permute(0, 2, 1) * masks
205     output = output * masks
206     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
207
208
209 def oneshot_trace_loss(mazes, output, policies, height, width):
210     masks = mazes == maze.v_empty
211     targets = maze.stationary_densities(
212         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
213     ).flatten(-2)
214     targets = targets * masks
215     output = output.squeeze(-1) * masks
216     return (output - targets).abs().sum() / masks.sum()
217
218
219 def oneshot(gpt, task):
220     t = gpt.training
221     gpt.eval()
222
223     if args.oneshot_input == "head":
224         dim_in = args.dim_model
225     elif args.oneshot_input == "deep":
226         dim_in = args.dim_model * args.nb_blocks * 2
227     else:
228         raise ValueError(f"{args.oneshot_input=}")
229
230     if args.oneshot_output == "policy":
231         dim_out = 4
232         compute_loss = oneshot_policy_loss
233     elif args.oneshot_output == "trace":
234         dim_out = 1
235         compute_loss = oneshot_trace_loss
236     else:
237         raise ValueError(f"{args.oneshot_output=}")
238
239     model = nn.Sequential(
240         nn.Linear(dim_in, args.dim_model),
241         nn.ReLU(),
242         nn.Linear(args.dim_model, args.dim_model),
243         nn.ReLU(),
244         nn.Linear(args.dim_model, dim_out),
245     ).to(device)
246
247     for n_epoch in range(args.nb_epochs):
248         learning_rate = learning_rate_schedule[n_epoch]
249         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
250
251         acc_train_loss, nb_train_samples = 0, 0
252         for mazes, policies in task.policy_batches(split="train"):
253             order = random_order(mazes, task.height * task.width)
254             x = shuffle(mazes, order)
255             x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
256             output_gpt = shuffle(x, order, reorder=True)
257             output = model(output_gpt)
258
259             loss = compute_loss(mazes, output, policies, task.height, task.width)
260             acc_train_loss += loss.item() * mazes.size(0)
261             nb_train_samples += mazes.size(0)
262
263             optimizer.zero_grad()
264             loss.backward()
265             optimizer.step()
266
267         acc_test_loss, nb_test_samples = 0, 0
268         for mazes, policies in task.policy_batches(split="test"):
269             order = random_order(mazes, task.height * task.width)
270             x = shuffle(mazes, order)
271             x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
272             output_gpt = shuffle(x, order, reorder=True)
273             output = model(output_gpt)
274             loss = compute_loss(mazes, output, policies, task.height, task.width)
275             acc_test_loss += loss.item() * mazes.size(0)
276             nb_test_samples += mazes.size(0)
277
278         log_string(
279             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
280         )
281
282         # -------------------
283         mazes = task.test_input[:32, : task.height * task.width]
284         policies = task.test_policies[:32]
285         order = random_order(mazes, task.height * task.width)
286         x = shuffle(mazes, order)
287         x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
288         output_gpt = shuffle(x, order, reorder=True)
289         output = model(output_gpt)
290         if args.oneshot_output == "policy":
291             targets = policies.permute(0, 2, 1)
292             scores = (
293                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
294             ).float()
295         elif args.oneshot_output == "trace":
296             targets = maze.stationary_densities(
297                 mazes.view(-1, task.height, task.width),
298                 policies.view(-1, 4, task.height, task.width),
299             ).flatten(-2)
300             scores = output
301         else:
302             raise ValueError(f"{args.oneshot_output=}")
303
304         scores = scores.reshape(-1, task.height, task.width)
305         mazes = mazes.reshape(-1, task.height, task.width)
306         targets = targets.reshape(-1, task.height, task.width)
307         maze.save_image(
308             os.path.join(
309                 args.result_dir,
310                 f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png",
311             ),
312             mazes=mazes,
313             score_paths=scores,
314             score_truth=targets,
315         )
316         # -------------------
317
318     gpt.train(t)
319
320
321 ######################################################################
322
323
324 class Task:
325     def batches(self, split="train", nb_to_use=-1, desc=None):
326         pass
327
328     def vocabulary_size(self):
329         pass
330
331     def produce_results(self, n_epoch, model):
332         pass
333
334
335 ######################################################################
336
337 import maze
338
339
340 class TaskMaze(Task):
341     def map2seq(self, *m):
342         return torch.cat([x.flatten(1) for x in m], 1)
343
344     def seq2map(self, s):
345         s = s.reshape(s.size(0), -1, self.height, self.width)
346         return (s[:, k] for k in range(s.size(1)))
347
348     def __init__(
349         self,
350         nb_train_samples,
351         nb_test_samples,
352         batch_size,
353         height,
354         width,
355         nb_walls,
356         device=torch.device("cpu"),
357     ):
358         self.batch_size = batch_size
359         self.height = height
360         self.width = width
361         self.device = device
362
363         train_mazes, train_paths, train_policies = maze.create_maze_data(
364             nb_train_samples,
365             height=height,
366             width=width,
367             nb_walls=nb_walls,
368             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
369         )
370         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
371         self.train_policies = train_policies.flatten(-2).to(device)
372
373         test_mazes, test_paths, test_policies = maze.create_maze_data(
374             nb_test_samples,
375             height=height,
376             width=width,
377             nb_walls=nb_walls,
378             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
379         )
380         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
381         self.test_policies = test_policies.flatten(-2).to(device)
382
383         self.nb_codes = self.train_input.max() + 1
384
385     def batches(self, split="train", nb_to_use=-1, desc=None):
386         assert split in {"train", "test"}
387         input = self.train_input if split == "train" else self.test_input
388         if nb_to_use > 0:
389             input = input[:nb_to_use]
390         if desc is None:
391             desc = f"epoch-{split}"
392         for batch in tqdm.tqdm(
393             input.split(self.batch_size), dynamic_ncols=True, desc=desc
394         ):
395             yield batch
396
397     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
398         assert split in {"train", "test"}
399         input = self.train_input if split == "train" else self.test_input
400         policies = self.train_policies if split == "train" else self.test_policies
401         input = input[:, : self.height * self.width]
402         policies = policies * (input != maze.v_wall)[:, None]
403
404         if nb_to_use > 0:
405             input = input[:nb_to_use]
406             policies = policies[:nb_to_use]
407
408         if desc is None:
409             desc = f"epoch-{split}"
410         for batch in tqdm.tqdm(
411             zip(input.split(self.batch_size), policies.split(self.batch_size)),
412             dynamic_ncols=True,
413             desc=desc,
414         ):
415             yield batch
416
417     def vocabulary_size(self):
418         return self.nb_codes
419
420     def compute_error(self, model, split="train", nb_to_use=-1):
421         nb_total, nb_correct = 0, 0
422         for input in task.batches(split, nb_to_use):
423             result = input.clone()
424             ar_mask = result.new_zeros(result.size())
425             ar_mask[:, self.height * self.width :] = 1
426             result *= 1 - ar_mask
427             order = random_order(result, self.height * self.width)
428             masked_inplace_autoregression(
429                 model, self.batch_size, result, ar_mask, order=order
430             )
431             result = shuffle(result, order, reorder=True)
432             mazes, paths = self.seq2map(result)
433             nb_correct += maze.path_correctness(mazes, paths).long().sum()
434             nb_total += mazes.size(0)
435
436         return nb_total, nb_correct
437
438     def produce_results(self, n_epoch, model):
439         with torch.autograd.no_grad():
440             t = model.training
441             model.eval()
442
443             train_nb_total, train_nb_correct = self.compute_error(
444                 model, "train", nb_to_use=1000
445             )
446             log_string(
447                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
448             )
449
450             test_nb_total, test_nb_correct = self.compute_error(
451                 model, "test", nb_to_use=1000
452             )
453             log_string(
454                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
455             )
456
457             input = self.test_input[:32]
458             result = input.clone()
459             ar_mask = result.new_zeros(result.size())
460             ar_mask[:, self.height * self.width :] = 1
461             result *= 1 - ar_mask
462             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
463
464             mazes, paths = self.seq2map(input)
465             _, predicted_paths = self.seq2map(result)
466             maze.save_image(
467                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
468                 mazes=mazes,
469                 target_paths=paths,
470                 predicted_paths=predicted_paths,
471                 path_correct=maze.path_correctness(mazes, predicted_paths),
472             )
473
474             model.train(t)
475
476
477 ######################################################################
478
479 log_string(f"device {device}")
480
481
482 task = TaskMaze(
483     nb_train_samples=args.nb_train_samples,
484     nb_test_samples=args.nb_test_samples,
485     batch_size=args.batch_size,
486     height=args.maze_height,
487     width=args.maze_width,
488     nb_walls=args.maze_nb_walls,
489     device=device,
490 )
491
492
493 vocabulary_size = task.vocabulary_size()
494
495 log_string(f"vocabulary_size {vocabulary_size}")
496
497 ##############################
498
499 model = mygpt.MyGPT(
500     vocabulary_size=vocabulary_size,
501     dim_model=args.dim_model,
502     dim_keys=args.dim_keys,
503     dim_hidden=args.dim_hidden,
504     nb_heads=args.nb_heads,
505     nb_blocks=args.nb_blocks,
506     causal=True,
507     dropout=args.dropout,
508 )
509
510 model.to(device)
511
512 nb_parameters = sum(p.numel() for p in model.parameters())
513 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
514
515 ######################################################################
516
517 nb_epochs_finished = 0
518
519 if args.no_checkpoint:
520     log_string(f"not trying to load checkpoint.")
521
522 else:
523     try:
524         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
525         checkpoint = torch.load(checkpoint_name)
526         nb_epochs_finished = checkpoint["nb_epochs_finished"]
527         model.load_state_dict(checkpoint["model_state"])
528         torch.set_rng_state(checkpoint["rng_state"])
529         if torch.cuda.is_available():
530             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
531
532         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
533
534     except FileNotFoundError:
535         log_string("starting from scratch.")
536
537     except:
538         log_string("error when loading the checkpoint.")
539         exit(1)
540
541 ######################################################################
542
543 token_count = 0
544 for input in task.batches(split="train"):
545     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
546 token_probas = token_count / token_count.sum()
547 entropy = -torch.xlogy(token_probas, token_probas).sum()
548 train_set_perplexity = math.exp(entropy)
549
550 ##############################
551
552 if args.learning_rate_schedule == "cos":
553     learning_rate_schedule = {}
554     for n_epoch in range(args.nb_epochs):
555         u = n_epoch / args.nb_epochs * math.pi
556         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
557 else:
558     u = {
559         int(k): float(v)
560         for k, v in [
561             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
562         ]
563     }
564
565     learning_rate_schedule = {}
566     learning_rate = args.learning_rate
567     for n_epoch in range(args.nb_epochs):
568         if n_epoch in u:
569             learning_rate = u[n_epoch]
570         learning_rate_schedule[n_epoch] = learning_rate
571
572 log_string(f"learning_rate_schedule {learning_rate_schedule}")
573
574 ##############################
575
576 if nb_epochs_finished >= args.nb_epochs:
577     n_epoch = nb_epochs_finished
578     train_perplexity = compute_perplexity(model, split="train")
579     test_perplexity = compute_perplexity(model, split="test")
580
581     log_string(
582         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
583     )
584
585     task.produce_results(n_epoch, model)
586
587 ##############################
588
589 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
590     learning_rate = learning_rate_schedule[n_epoch]
591
592     log_string(f"learning_rate {learning_rate}")
593
594     if args.optim == "sgd":
595         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
596     elif args.optim == "adam":
597         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
598     elif args.optim == "adamw":
599         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
600     else:
601         raise ValueError(f"{args.optim=}")
602
603     model.train()
604
605     nb_train_samples, acc_train_loss = 0, 0.0
606
607     for input in task.batches(split="train"):
608         input = input.to(device)
609         order = random_order(input, task.height * task.width)
610         input = shuffle(input, order)
611         output = model(mygpt.BracketedSequence(input), order=order).x
612         loss = F.cross_entropy(output.transpose(1, 2), input)
613         acc_train_loss += loss.item() * input.size(0)
614         nb_train_samples += input.size(0)
615
616         optimizer.zero_grad()
617         loss.backward()
618         optimizer.step()
619
620     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
621     test_perplexity = compute_perplexity(model, split="test")
622
623     log_string(
624         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
625     )
626
627     task.produce_results(n_epoch, model)
628
629     checkpoint = {
630         "nb_epochs_finished": n_epoch + 1,
631         "model_state": model.state_dict(),
632         "rng_state": torch.get_rng_state(),
633     }
634
635     if torch.cuda.is_available():
636         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
637
638     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
639     torch.save(checkpoint, checkpoint_name)
640     log_string(f"saved checkpoint {checkpoint_name}")
641
642 ######################################################################
643
644 if args.oneshot:
645     oneshot(model, task)
646
647 ######################################################################