Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--one_shot", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
131         i = (ar_mask.sum(0) > 0).nonzero()
132         if i.min() > 0:
133             # Needed to initialize the model's cache
134             model(mygpt.BracketedSequence(input, 0, i.min()))
135         for s in range(i.min(), i.max() + 1):
136             output = model(mygpt.BracketedSequence(input, s, 1)).x
137             logits = output[:, s]
138             if args.deterministic_synthesis:
139                 t_next = logits.argmax(1)
140             else:
141                 dist = torch.distributions.categorical.Categorical(logits=logits)
142                 t_next = dist.sample()
143             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
144
145
146 ######################################################################
147
148
149 def compute_perplexity(model, split="train"):
150     with torch.autograd.no_grad():
151         t = model.training
152         model.eval()
153
154         nb_samples, acc_loss = 0, 0.0
155
156         for input in task.batches(split=split):
157             input = input.to(device)
158
159             output = model(mygpt.BracketedSequence(input)).x
160             loss = F.cross_entropy(output.transpose(1, 2), input)
161             acc_loss += loss.item() * input.size(0)
162             nb_samples += input.size(0)
163
164         model.train(t)
165
166         return math.exp(min(100, acc_loss / nb_samples))
167
168
169 ######################################################################
170
171
172 def one_shot(gpt, task):
173     t = gpt.training
174     gpt.eval()
175     model = nn.Sequential(
176         nn.Linear(args.dim_model, args.dim_model),
177         nn.ReLU(),
178         nn.Linear(args.dim_model, 4),
179     ).to(device)
180
181     print(f"{args.nb_epochs=}")
182
183     for n_epoch in range(args.nb_epochs):
184         print(f"{n_epoch=}")
185         learning_rate = learning_rate_schedule[n_epoch]
186         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
187
188         acc_train_loss, nb_train_samples = 0, 0
189         for input, targets in task.policy_batches(split="train"):
190             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
191             output = model(output_gpt)
192             loss = (
193                 -(output.log_softmax(-1) * targets).sum(-1).mean()
194                 + targets.xlogy(targets).sum(-1).mean()
195             )
196             acc_train_loss += loss.item() * input.size(0)
197             nb_train_samples += input.size(0)
198
199             optimizer.zero_grad()
200             loss.backward()
201             optimizer.step()
202
203         acc_test_loss, nb_test_samples = 0, 0
204         for input, targets in task.policy_batches(split="test"):
205             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
206             output = model(output_gpt)
207             loss = (
208                 -(output.log_softmax(-1) * targets).sum(-1).mean()
209                 + targets.xlogy(targets).sum(-1).mean()
210             )
211             acc_test_loss += loss.item() * input.size(0)
212             nb_test_samples += input.size(0)
213
214         log_string(
215             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
216         )
217
218         # -------------------
219         input, targets = next(task.policy_batches(split="test"))
220         output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
221         output = model(output_gpt)
222         losses = (-output.log_softmax(-1) * targets + targets.xlogy(targets)).sum(-1)
223         losses = losses / losses.max()
224         print(f"{input.size()=} {losses.size()=} {losses.min()=} {losses.max()=}")
225         losses = losses * (input == 0)
226         losses = losses.reshape(-1, args.maze_height, args.maze_width)
227         input = input.reshape(-1, args.maze_height, args.maze_width)
228         maze.save_image(
229             os.path.join(args.result_dir, f"oneshot_{n_epoch:04d}.png"),
230             mazes=input,
231             score_paths=losses,
232         )
233         # -------------------
234
235     gpt.train(t)
236
237
238 ######################################################################
239
240
241 class Task:
242     def batches(self, split="train"):
243         pass
244
245     def vocabulary_size(self):
246         pass
247
248     def produce_results(self, n_epoch, model):
249         pass
250
251
252 ######################################################################
253
254 import maze
255
256
257 class TaskMaze(Task):
258     def map2seq(self, *m):
259         return torch.cat([x.flatten(1) for x in m], 1)
260
261     def seq2map(self, s):
262         s = s.reshape(s.size(0), -1, self.height, self.width)
263         return (s[:, k] for k in range(s.size(1)))
264
265     def __init__(
266         self,
267         nb_train_samples,
268         nb_test_samples,
269         batch_size,
270         height,
271         width,
272         nb_walls,
273         device=torch.device("cpu"),
274     ):
275         self.batch_size = batch_size
276         self.height = height
277         self.width = width
278         self.device = device
279
280         train_mazes, train_paths, train_policies = maze.create_maze_data(
281             nb_train_samples,
282             height=height,
283             width=width,
284             nb_walls=nb_walls,
285             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
286         )
287         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
288         self.train_policies = train_policies.flatten(-2).permute(0, 2, 1).to(device)
289
290         test_mazes, test_paths, test_policies = maze.create_maze_data(
291             nb_test_samples,
292             height=height,
293             width=width,
294             nb_walls=nb_walls,
295             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
296         )
297         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
298         self.test_policies = test_policies.flatten(-2).permute(0, 2, 1).to(device)
299
300         self.nb_codes = self.train_input.max() + 1
301
302     def batches(self, split="train", nb_to_use=-1):
303         assert split in {"train", "test"}
304         input = self.train_input if split == "train" else self.test_input
305         if nb_to_use > 0:
306             input = input[:nb_to_use]
307         for batch in tqdm.tqdm(
308             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
309         ):
310             yield batch
311
312     def policy_batches(self, split="train", nb_to_use=-1):
313         assert split in {"train", "test"}
314         input = self.train_input if split == "train" else self.test_input
315         targets = self.train_policies if split == "train" else self.test_policies
316         input = input[:, : self.height * self.width]
317         targets = targets * (input != maze.v_wall)[:, :, None]
318
319         if nb_to_use > 0:
320             input = input[:nb_to_use]
321             targets = targets[:nb_to_use]
322
323         for batch in tqdm.tqdm(
324             zip(input.split(self.batch_size), targets.split(self.batch_size)),
325             dynamic_ncols=True,
326             desc=f"epoch-{split}",
327         ):
328             yield batch
329
330     def vocabulary_size(self):
331         return self.nb_codes
332
333     def compute_error(self, model, split="train", nb_to_use=-1):
334         nb_total, nb_correct = 0, 0
335         for input in task.batches(split, nb_to_use):
336             result = input.clone()
337             ar_mask = result.new_zeros(result.size())
338             ar_mask[:, self.height * self.width :] = 1
339             result *= 1 - ar_mask
340             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
341             mazes, paths = self.seq2map(result)
342             nb_correct += maze.path_correctness(mazes, paths).long().sum()
343             nb_total += mazes.size(0)
344
345         return nb_total, nb_correct
346
347     def produce_results(self, n_epoch, model):
348         with torch.autograd.no_grad():
349             t = model.training
350             model.eval()
351
352             train_nb_total, train_nb_correct = self.compute_error(
353                 model, "train", nb_to_use=1000
354             )
355             log_string(
356                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
357             )
358
359             test_nb_total, test_nb_correct = self.compute_error(
360                 model, "test", nb_to_use=1000
361             )
362             log_string(
363                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
364             )
365
366             input = self.test_input[:32]
367             result = input.clone()
368             ar_mask = result.new_zeros(result.size())
369             ar_mask[:, self.height * self.width :] = 1
370             result *= 1 - ar_mask
371             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
372
373             mazes, paths = self.seq2map(input)
374             _, predicted_paths = self.seq2map(result)
375             maze.save_image(
376                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
377                 mazes=mazes,
378                 target_paths=paths,
379                 predicted_paths=predicted_paths,
380                 path_correct=maze.path_correctness(mazes, predicted_paths),
381             )
382
383             model.train(t)
384
385
386 ######################################################################
387
388 log_string(f"device {device}")
389
390
391 task = TaskMaze(
392     nb_train_samples=args.nb_train_samples,
393     nb_test_samples=args.nb_test_samples,
394     batch_size=args.batch_size,
395     height=args.maze_height,
396     width=args.maze_width,
397     nb_walls=args.maze_nb_walls,
398     device=device,
399 )
400
401
402 vocabulary_size = task.vocabulary_size()
403
404 log_string(f"vocabulary_size {vocabulary_size}")
405
406 ##############################
407
408 model = mygpt.MyGPT(
409     vocabulary_size=vocabulary_size,
410     dim_model=args.dim_model,
411     dim_keys=args.dim_keys,
412     dim_hidden=args.dim_hidden,
413     nb_heads=args.nb_heads,
414     nb_blocks=args.nb_blocks,
415     causal=True,
416     dropout=args.dropout,
417 )
418
419 model.to(device)
420
421 nb_parameters = sum(p.numel() for p in model.parameters())
422 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
423
424 ######################################################################
425
426 nb_epochs_finished = 0
427
428 if args.no_checkpoint:
429     log_string(f"not trying to load checkpoint.")
430
431 else:
432     try:
433         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
434         checkpoint = torch.load(checkpoint_name)
435         nb_epochs_finished = checkpoint["nb_epochs_finished"]
436         model.load_state_dict(checkpoint["model_state"])
437         torch.set_rng_state(checkpoint["rng_state"])
438         if torch.cuda.is_available():
439             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
440
441         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
442
443     except FileNotFoundError:
444         log_string("starting from scratch.")
445
446     except:
447         log_string("error when loading the checkpoint.")
448         exit(1)
449
450 ######################################################################
451
452 token_count = 0
453 for input in task.batches(split="train"):
454     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
455 token_probas = token_count / token_count.sum()
456 entropy = -torch.xlogy(token_probas, token_probas).sum()
457 train_set_perplexity = math.exp(entropy)
458
459 ##############################
460
461 if args.learning_rate_schedule == "cos":
462     learning_rate_schedule = {}
463     for n_epoch in range(args.nb_epochs):
464         u = n_epoch / args.nb_epochs * math.pi
465         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
466 else:
467     u = {
468         int(k): float(v)
469         for k, v in [
470             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
471         ]
472     }
473
474     learning_rate_schedule = {}
475     learning_rate = args.learning_rate
476     for n_epoch in range(args.nb_epochs):
477         if n_epoch in u:
478             learning_rate = u[n_epoch]
479         learning_rate_schedule[n_epoch] = learning_rate
480
481 log_string(f"learning_rate_schedule {learning_rate_schedule}")
482
483 ##############################
484
485 if args.one_shot:
486     one_shot(model, task)
487     exit(0)
488
489 ##############################
490
491 if nb_epochs_finished >= args.nb_epochs:
492     n_epoch = nb_epochs_finished
493     train_perplexity = compute_perplexity(model, split="train")
494     test_perplexity = compute_perplexity(model, split="test")
495
496     log_string(
497         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
498     )
499
500     task.produce_results(n_epoch, model)
501
502     exit(0)
503
504 ##############################
505
506 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
507     learning_rate = learning_rate_schedule[n_epoch]
508
509     log_string(f"learning_rate {learning_rate}")
510
511     if args.optim == "sgd":
512         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
513     elif args.optim == "adam":
514         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
515     elif args.optim == "adamw":
516         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
517     else:
518         raise ValueError(f"Unknown optimizer {args.optim}.")
519
520     model.train()
521
522     nb_train_samples, acc_train_loss = 0, 0.0
523
524     for input in task.batches(split="train"):
525         input = input.to(device)
526         output = model(mygpt.BracketedSequence(input)).x
527         loss = F.cross_entropy(output.transpose(1, 2), input)
528         acc_train_loss += loss.item() * input.size(0)
529         nb_train_samples += input.size(0)
530
531         optimizer.zero_grad()
532         loss.backward()
533         optimizer.step()
534
535     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
536     test_perplexity = compute_perplexity(model, split="test")
537
538     log_string(
539         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
540     )
541
542     task.produce_results(n_epoch, model)
543
544     checkpoint = {
545         "nb_epochs_finished": n_epoch + 1,
546         "model_state": model.state_dict(),
547         "rng_state": torch.get_rng_state(),
548     }
549
550     if torch.cuda.is_available():
551         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
552
553     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
554     torch.save(checkpoint, checkpoint_name)
555     log_string(f"saved checkpoint {checkpoint_name}")
556
557 ######################################################################