Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--one_shot", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
131         i = (ar_mask.sum(0) > 0).nonzero()
132         if i.min() > 0:
133             # Needed to initialize the model's cache
134             model(mygpt.BracketedSequence(input, 0, i.min()))
135         for s in range(i.min(), i.max() + 1):
136             output = model(mygpt.BracketedSequence(input, s, 1)).x
137             logits = output[:, s]
138             if args.deterministic_synthesis:
139                 t_next = logits.argmax(1)
140             else:
141                 dist = torch.distributions.categorical.Categorical(logits=logits)
142                 t_next = dist.sample()
143             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
144
145
146 ######################################################################
147
148
149 def compute_perplexity(model, split="train"):
150     with torch.autograd.no_grad():
151         t = model.training
152         model.eval()
153
154         nb_samples, acc_loss = 0, 0.0
155
156         for input in task.batches(split=split):
157             input = input.to(device)
158
159             output = model(mygpt.BracketedSequence(input)).x
160             loss = F.cross_entropy(output.transpose(1, 2), input)
161             acc_loss += loss.item() * input.size(0)
162             nb_samples += input.size(0)
163
164         model.train(t)
165
166         return math.exp(min(100, acc_loss / nb_samples))
167
168
169 ######################################################################
170
171
172 def nb_rank_error(output, targets):
173     output = output.reshape(-1, output.size(-1))
174     targets = targets.reshape(-1, targets.size(-1))
175     i = outputs.argmax(1)
176     # out=input.gather out[i][j]=input[i][index[i][j]]
177     # u[k]=targets[k][i[k]]
178     return output[targets.argmax(1)]
179
180
181 def one_shot(gpt, task):
182     t = gpt.training
183     gpt.eval()
184     model = nn.Linear(args.dim_model, 4).to(device)
185
186     for n_epoch in range(args.nb_epochs):
187         optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
188
189         acc_train_loss, nb_train_samples = 0, 0
190         for input, targets in task.policy_batches(split="train"):
191             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
192             output = model(output_gpt)
193             loss = -(output.log_softmax(-1) * targets).sum(-1).mean()
194             acc_train_loss += loss.item() * input.size(0)
195             nb_train_samples += input.size(0)
196
197             optimizer.zero_grad()
198             loss.backward()
199             optimizer.step()
200
201         acc_test_loss, nb_test_samples = 0, 0
202         for input, targets in task.policy_batches(split="test"):
203             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
204             output = model(output_gpt)
205             loss = -(output.log_softmax(-1) * targets).sum(-1).mean()
206             acc_test_loss += loss.item() * input.size(0)
207             nb_test_samples += input.size(0)
208
209         print(
210             f"{n_epoch=} {acc_train_loss/nb_train_samples=} {acc_test_loss/nb_test_samples=}"
211         )
212
213     gpt.train(t)
214
215
216 ######################################################################
217
218
219 class Task:
220     def batches(self, split="train"):
221         pass
222
223     def vocabulary_size(self):
224         pass
225
226     def produce_results(self, n_epoch, model):
227         pass
228
229
230 ######################################################################
231
232 import maze
233
234
235 class TaskMaze(Task):
236     def map2seq(self, *m):
237         return torch.cat([x.flatten(1) for x in m], 1)
238
239     def seq2map(self, s):
240         s = s.reshape(s.size(0), -1, self.height, self.width)
241         return (s[:, k] for k in range(s.size(1)))
242
243     def __init__(
244         self,
245         nb_train_samples,
246         nb_test_samples,
247         batch_size,
248         height,
249         width,
250         nb_walls,
251         device=torch.device("cpu"),
252     ):
253         self.batch_size = batch_size
254         self.height = height
255         self.width = width
256         self.device = device
257
258         train_mazes, train_paths, train_policies = maze.create_maze_data(
259             nb_train_samples,
260             height=height,
261             width=width,
262             nb_walls=nb_walls,
263             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
264         )
265         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
266         self.train_policies = train_policies.flatten(-2).permute(0, 2, 1).to(device)
267
268         test_mazes, test_paths, test_policies = maze.create_maze_data(
269             nb_test_samples,
270             height=height,
271             width=width,
272             nb_walls=nb_walls,
273             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
274         )
275         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
276         self.test_policies = test_policies.flatten(-2).permute(0, 2, 1).to(device)
277
278         self.nb_codes = self.train_input.max() + 1
279
280     def batches(self, split="train", nb_to_use=-1):
281         assert split in {"train", "test"}
282         input = self.train_input if split == "train" else self.test_input
283         if nb_to_use > 0:
284             input = input[:nb_to_use]
285         for batch in tqdm.tqdm(
286             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
287         ):
288             yield batch
289
290     def policy_batches(self, split="train", nb_to_use=-1):
291         assert split in {"train", "test"}
292         input = self.train_input if split == "train" else self.test_input
293         targets = self.train_policies if split == "train" else self.test_policies
294         input = input[:, : self.height * self.width]
295         targets = targets * (input != maze.v_wall)[:, :, None]
296
297         if nb_to_use > 0:
298             input = input[:nb_to_use]
299             targets = targets[:nb_to_use]
300
301         for batch in tqdm.tqdm(
302             zip(input.split(self.batch_size), targets.split(self.batch_size)),
303             dynamic_ncols=True,
304             desc=f"epoch-{split}",
305         ):
306             yield batch
307
308     def vocabulary_size(self):
309         return self.nb_codes
310
311     def compute_error(self, model, split="train", nb_to_use=-1):
312         nb_total, nb_correct = 0, 0
313         for input in task.batches(split, nb_to_use):
314             result = input.clone()
315             ar_mask = result.new_zeros(result.size())
316             ar_mask[:, self.height * self.width :] = 1
317             result *= 1 - ar_mask
318             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
319             mazes, paths = self.seq2map(result)
320             nb_correct += maze.path_correctness(mazes, paths).long().sum()
321             nb_total += mazes.size(0)
322
323         return nb_total, nb_correct
324
325     def produce_results(self, n_epoch, model):
326         with torch.autograd.no_grad():
327             t = model.training
328             model.eval()
329
330             train_nb_total, train_nb_correct = self.compute_error(
331                 model, "train", nb_to_use=1000
332             )
333             log_string(
334                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
335             )
336
337             test_nb_total, test_nb_correct = self.compute_error(
338                 model, "test", nb_to_use=1000
339             )
340             log_string(
341                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
342             )
343
344             input = self.test_input[:32]
345             result = input.clone()
346             ar_mask = result.new_zeros(result.size())
347             ar_mask[:, self.height * self.width :] = 1
348             result *= 1 - ar_mask
349             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
350
351             mazes, paths = self.seq2map(input)
352             _, predicted_paths = self.seq2map(result)
353             maze.save_image(
354                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
355                 mazes,
356                 paths,
357                 predicted_paths,
358                 maze.path_correctness(mazes, predicted_paths),
359             )
360
361             model.train(t)
362
363
364 ######################################################################
365
366 log_string(f"device {device}")
367
368
369 task = TaskMaze(
370     nb_train_samples=args.nb_train_samples,
371     nb_test_samples=args.nb_test_samples,
372     batch_size=args.batch_size,
373     height=args.maze_height,
374     width=args.maze_width,
375     nb_walls=args.maze_nb_walls,
376     device=device,
377 )
378
379
380 vocabulary_size = task.vocabulary_size()
381
382 log_string(f"vocabulary_size {vocabulary_size}")
383
384 ##############################
385
386 model = mygpt.MyGPT(
387     vocabulary_size=vocabulary_size,
388     dim_model=args.dim_model,
389     dim_keys=args.dim_keys,
390     dim_hidden=args.dim_hidden,
391     nb_heads=args.nb_heads,
392     nb_blocks=args.nb_blocks,
393     causal=True,
394     dropout=args.dropout,
395 )
396
397 model.to(device)
398
399 nb_parameters = sum(p.numel() for p in model.parameters())
400 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
401
402 ######################################################################
403
404 nb_epochs_finished = 0
405
406 if args.no_checkpoint:
407     log_string(f"not trying to load checkpoint.")
408
409 else:
410     try:
411         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
412         checkpoint = torch.load(checkpoint_name)
413         nb_epochs_finished = checkpoint["nb_epochs_finished"]
414         model.load_state_dict(checkpoint["model_state"])
415         torch.set_rng_state(checkpoint["rng_state"])
416         if torch.cuda.is_available():
417             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
418
419         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
420
421     except FileNotFoundError:
422         log_string("starting from scratch.")
423
424     except:
425         log_string("error when loading the checkpoint.")
426         exit(1)
427
428 ######################################################################
429
430 token_count = 0
431 for input in task.batches(split="train"):
432     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
433 token_probas = token_count / token_count.sum()
434 entropy = -torch.xlogy(token_probas, token_probas).sum()
435 train_set_perplexity = math.exp(entropy)
436
437 ##############################
438
439 if args.learning_rate_schedule == "cos":
440     learning_rate_schedule = {}
441     for n_epoch in range(args.nb_epochs):
442         u = n_epoch / args.nb_epochs * math.pi
443         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
444 else:
445     u = {
446         int(k): float(v)
447         for k, v in [
448             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
449         ]
450     }
451
452     learning_rate_schedule = {}
453     learning_rate = args.learning_rate
454     for n_epoch in range(args.nb_epochs):
455         if n_epoch in u:
456             learning_rate = u[n_epoch]
457         learning_rate_schedule[n_epoch] = learning_rate
458
459 log_string(f"learning_rate_schedule {learning_rate_schedule}")
460
461 ##############################
462
463 if args.one_shot:
464     one_shot(model, task)
465     exit(0)
466
467 ##############################
468
469 if nb_epochs_finished >= args.nb_epochs:
470     n_epoch = nb_epochs_finished
471     train_perplexity = compute_perplexity(model, split="train")
472     test_perplexity = compute_perplexity(model, split="test")
473
474     log_string(
475         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
476     )
477
478     task.produce_results(n_epoch, model)
479
480     exit(0)
481
482 ##############################
483
484 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
485     learning_rate = learning_rate_schedule[n_epoch]
486
487     log_string(f"learning_rate {learning_rate}")
488
489     if args.optim == "sgd":
490         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
491     elif args.optim == "adam":
492         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
493     elif args.optim == "adamw":
494         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
495     else:
496         raise ValueError(f"Unknown optimizer {args.optim}.")
497
498     model.train()
499
500     nb_train_samples, acc_train_loss = 0, 0.0
501
502     for input in task.batches(split="train"):
503         input = input.to(device)
504         output = model(mygpt.BracketedSequence(input)).x
505         loss = F.cross_entropy(output.transpose(1, 2), input)
506         acc_train_loss += loss.item() * input.size(0)
507         nb_train_samples += input.size(0)
508
509         optimizer.zero_grad()
510         loss.backward()
511         optimizer.step()
512
513     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
514     test_perplexity = compute_perplexity(model, split="test")
515
516     log_string(
517         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
518     )
519
520     task.produce_results(n_epoch, model)
521
522     checkpoint = {
523         "nb_epochs_finished": n_epoch + 1,
524         "model_state": model.state_dict(),
525         "rng_state": torch.get_rng_state(),
526     }
527
528     if torch.cuda.is_available():
529         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
530
531     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
532     torch.save(checkpoint, checkpoint_name)
533     log_string(f"saved checkpoint {checkpoint_name}")
534
535 ######################################################################