Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
72
73 ##############################
74 # maze options
75
76 parser.add_argument("--maze_height", type=int, default=13)
77
78 parser.add_argument("--maze_width", type=int, default=21)
79
80 parser.add_argument("--maze_nb_walls", type=int, default=15)
81
82 parser.add_argument("--oneshot", action="store_true", default=False)
83
84 parser.add_argument("--oneshot_input", type=str, default="head")
85
86 parser.add_argument("--oneshot_output", type=str, default="policy")
87
88 ######################################################################
89
90 args = parser.parse_args()
91
92 try:
93     os.mkdir(args.result_dir)
94 except FileExistsError:
95     if not args.overwrite_results:
96         print(f"result directory {args.result_dir} already exists")
97         exit(1)
98
99 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
100
101 if args.seed >= 0:
102     # torch.backends.cudnn.deterministic = True
103     # torch.backends.cudnn.benchmark = False
104     # torch.use_deterministic_algorithms(True)
105     torch.manual_seed(args.seed)
106     if torch.cuda.is_available():
107         torch.cuda.manual_seed_all(args.seed)
108
109 ######################################################################
110
111
112 def log_string(s):
113     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
114
115     if log_file is not None:
116         log_file.write(t + s + "\n")
117         log_file.flush()
118
119     print(t + s)
120     sys.stdout.flush()
121
122
123 for n in vars(args):
124     log_string(f"args.{n} {getattr(args, n)}")
125
126 ######################################################################
127
128
129 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
130 # tokens that should be generated
131
132
133 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
134     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
135         i = (ar_mask.sum(0) > 0).nonzero()
136         if i.min() > 0:
137             # Needed to initialize the model's cache
138             model(mygpt.BracketedSequence(input, 0, i.min()))
139         for s in range(i.min(), i.max() + 1):
140             output = model(mygpt.BracketedSequence(input, s, 1)).x
141             logits = output[:, s]
142             if args.deterministic_synthesis:
143                 t_next = logits.argmax(1)
144             else:
145                 dist = torch.distributions.categorical.Categorical(logits=logits)
146                 t_next = dist.sample()
147             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
148
149
150 ######################################################################
151
152
153 def compute_perplexity(model, split="train"):
154     with torch.autograd.no_grad():
155         t = model.training
156         model.eval()
157
158         nb_samples, acc_loss = 0, 0.0
159
160         for input in task.batches(split=split):
161             input = input.to(device)
162
163             output = model(mygpt.BracketedSequence(input)).x
164             loss = F.cross_entropy(output.transpose(1, 2), input)
165             acc_loss += loss.item() * input.size(0)
166             nb_samples += input.size(0)
167
168         model.train(t)
169
170         return math.exp(min(100, acc_loss / nb_samples))
171
172
173 ######################################################################
174
175
176 def oneshot_policy_loss(mazes, output, policies, height, width):
177     masks = (mazes == maze.v_empty).unsqueeze(-1)
178     targets = policies.permute(0, 2, 1) * masks
179     output = output * masks
180     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
181
182
183 def oneshot_trace_loss(mazes, output, policies, height, width):
184     masks = mazes == maze.v_empty
185     targets = maze.stationary_densities(
186         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
187     ).flatten(-2)
188     targets = targets * masks
189     output = output.squeeze(-1) * masks
190     return (output - targets).abs().sum() / masks.sum()
191
192
193 def oneshot(gpt, task):
194     t = gpt.training
195     gpt.eval()
196
197     if args.oneshot_input == "head":
198         dim_in = args.dim_model
199     elif args.oneshot_input == "deep":
200         dim_in = args.dim_model * args.nb_blocks * 2
201     else:
202         raise ValueError(f"{args.oneshot_input=}")
203
204     if args.oneshot_output == "policy":
205         dim_out = 4
206         compute_loss = oneshot_policy_loss
207     elif args.oneshot_output == "trace":
208         dim_out = 1
209         compute_loss = oneshot_trace_loss
210     else:
211         raise ValueError(f"{args.oneshot_output=}")
212
213     model = nn.Sequential(
214         nn.Linear(dim_in, args.dim_model),
215         nn.ReLU(),
216         nn.Linear(args.dim_model, args.dim_model),
217         nn.ReLU(),
218         nn.Linear(args.dim_model, dim_out),
219     ).to(device)
220
221     for n_epoch in range(args.nb_epochs):
222         learning_rate = learning_rate_schedule[n_epoch]
223         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
224
225         acc_train_loss, nb_train_samples = 0, 0
226         for mazes, policies in task.policy_batches(split="train"):
227             ####
228             # print(f'{mazes.size()=} {policies.size()=}')
229             # s = maze.stationary_densities(
230             # exit(0)
231             ####
232             output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
233             output = model(output_gpt)
234
235             loss = compute_loss(mazes, output, policies, task.height, task.width)
236             acc_train_loss += loss.item() * mazes.size(0)
237             nb_train_samples += mazes.size(0)
238
239             optimizer.zero_grad()
240             loss.backward()
241             optimizer.step()
242
243         acc_test_loss, nb_test_samples = 0, 0
244         for mazes, policies in task.policy_batches(split="test"):
245             output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
246             output = model(output_gpt)
247             loss = compute_loss(mazes, output, policies, task.height, task.width)
248             acc_test_loss += loss.item() * mazes.size(0)
249             nb_test_samples += mazes.size(0)
250
251         log_string(
252             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
253         )
254
255         # -------------------
256         mazes = task.test_input[:32, : task.height * task.width]
257         policies = task.test_policies[:32]
258         output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
259         output = model(output_gpt)
260         if args.oneshot_output == "policy":
261             targets = policies.permute(0, 2, 1)
262             scores = (
263                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
264             ).float()
265         elif args.oneshot_output == "trace":
266             targets = maze.stationary_densities(
267                 mazes.view(-1, task.height, task.width),
268                 policies.view(-1, 4, task.height, task.width),
269             ).flatten(-2)
270             scores = output
271         else:
272             raise ValueError(f"{args.oneshot_output=}")
273
274         scores = scores.reshape(-1, task.height, task.width)
275         mazes = mazes.reshape(-1, task.height, task.width)
276         targets = targets.reshape(-1, task.height, task.width)
277         maze.save_image(
278             os.path.join(
279                 args.result_dir,
280                 f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png",
281             ),
282             mazes=mazes,
283             score_paths=scores,
284             score_truth=targets,
285         )
286         # -------------------
287
288     gpt.train(t)
289
290
291 ######################################################################
292
293
294 class Task:
295     def batches(self, split="train"):
296         pass
297
298     def vocabulary_size(self):
299         pass
300
301     def produce_results(self, n_epoch, model):
302         pass
303
304
305 ######################################################################
306
307 import maze
308
309
310 class TaskMaze(Task):
311     def map2seq(self, *m):
312         return torch.cat([x.flatten(1) for x in m], 1)
313
314     def seq2map(self, s):
315         s = s.reshape(s.size(0), -1, self.height, self.width)
316         return (s[:, k] for k in range(s.size(1)))
317
318     def __init__(
319         self,
320         nb_train_samples,
321         nb_test_samples,
322         batch_size,
323         height,
324         width,
325         nb_walls,
326         device=torch.device("cpu"),
327     ):
328         self.batch_size = batch_size
329         self.height = height
330         self.width = width
331         self.device = device
332
333         train_mazes, train_paths, train_policies = maze.create_maze_data(
334             nb_train_samples,
335             height=height,
336             width=width,
337             nb_walls=nb_walls,
338             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
339         )
340         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
341         self.train_policies = train_policies.flatten(-2).to(device)
342
343         test_mazes, test_paths, test_policies = maze.create_maze_data(
344             nb_test_samples,
345             height=height,
346             width=width,
347             nb_walls=nb_walls,
348             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
349         )
350         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
351         self.test_policies = test_policies.flatten(-2).to(device)
352
353         self.nb_codes = self.train_input.max() + 1
354
355     def batches(self, split="train", nb_to_use=-1):
356         assert split in {"train", "test"}
357         input = self.train_input if split == "train" else self.test_input
358         if nb_to_use > 0:
359             input = input[:nb_to_use]
360         for batch in tqdm.tqdm(
361             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
362         ):
363             yield batch
364
365     def policy_batches(self, split="train", nb_to_use=-1):
366         assert split in {"train", "test"}
367         input = self.train_input if split == "train" else self.test_input
368         policies = self.train_policies if split == "train" else self.test_policies
369         input = input[:, : self.height * self.width]
370         policies = policies * (input != maze.v_wall)[:, None]
371
372         if nb_to_use > 0:
373             input = input[:nb_to_use]
374             policies = policies[:nb_to_use]
375
376         for batch in tqdm.tqdm(
377             zip(input.split(self.batch_size), policies.split(self.batch_size)),
378             dynamic_ncols=True,
379             desc=f"epoch-{split}",
380         ):
381             yield batch
382
383     def vocabulary_size(self):
384         return self.nb_codes
385
386     def compute_error(self, model, split="train", nb_to_use=-1):
387         nb_total, nb_correct = 0, 0
388         for input in task.batches(split, nb_to_use):
389             result = input.clone()
390             ar_mask = result.new_zeros(result.size())
391             ar_mask[:, self.height * self.width :] = 1
392             result *= 1 - ar_mask
393             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
394             mazes, paths = self.seq2map(result)
395             nb_correct += maze.path_correctness(mazes, paths).long().sum()
396             nb_total += mazes.size(0)
397
398         return nb_total, nb_correct
399
400     def produce_results(self, n_epoch, model):
401         with torch.autograd.no_grad():
402             t = model.training
403             model.eval()
404
405             train_nb_total, train_nb_correct = self.compute_error(
406                 model, "train", nb_to_use=1000
407             )
408             log_string(
409                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
410             )
411
412             test_nb_total, test_nb_correct = self.compute_error(
413                 model, "test", nb_to_use=1000
414             )
415             log_string(
416                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
417             )
418
419             input = self.test_input[:32]
420             result = input.clone()
421             ar_mask = result.new_zeros(result.size())
422             ar_mask[:, self.height * self.width :] = 1
423             result *= 1 - ar_mask
424             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
425
426             mazes, paths = self.seq2map(input)
427             _, predicted_paths = self.seq2map(result)
428             maze.save_image(
429                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
430                 mazes=mazes,
431                 target_paths=paths,
432                 predicted_paths=predicted_paths,
433                 path_correct=maze.path_correctness(mazes, predicted_paths),
434             )
435
436             model.train(t)
437
438
439 ######################################################################
440
441 log_string(f"device {device}")
442
443
444 task = TaskMaze(
445     nb_train_samples=args.nb_train_samples,
446     nb_test_samples=args.nb_test_samples,
447     batch_size=args.batch_size,
448     height=args.maze_height,
449     width=args.maze_width,
450     nb_walls=args.maze_nb_walls,
451     device=device,
452 )
453
454
455 vocabulary_size = task.vocabulary_size()
456
457 log_string(f"vocabulary_size {vocabulary_size}")
458
459 ##############################
460
461 model = mygpt.MyGPT(
462     vocabulary_size=vocabulary_size,
463     dim_model=args.dim_model,
464     dim_keys=args.dim_keys,
465     dim_hidden=args.dim_hidden,
466     nb_heads=args.nb_heads,
467     nb_blocks=args.nb_blocks,
468     causal=True,
469     dropout=args.dropout,
470 )
471
472 model.to(device)
473
474 nb_parameters = sum(p.numel() for p in model.parameters())
475 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
476
477 ######################################################################
478
479 nb_epochs_finished = 0
480
481 if args.no_checkpoint:
482     log_string(f"not trying to load checkpoint.")
483
484 else:
485     try:
486         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
487         checkpoint = torch.load(checkpoint_name)
488         nb_epochs_finished = checkpoint["nb_epochs_finished"]
489         model.load_state_dict(checkpoint["model_state"])
490         torch.set_rng_state(checkpoint["rng_state"])
491         if torch.cuda.is_available():
492             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
493
494         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
495
496     except FileNotFoundError:
497         log_string("starting from scratch.")
498
499     except:
500         log_string("error when loading the checkpoint.")
501         exit(1)
502
503 ######################################################################
504
505 token_count = 0
506 for input in task.batches(split="train"):
507     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
508 token_probas = token_count / token_count.sum()
509 entropy = -torch.xlogy(token_probas, token_probas).sum()
510 train_set_perplexity = math.exp(entropy)
511
512 ##############################
513
514 if args.learning_rate_schedule == "cos":
515     learning_rate_schedule = {}
516     for n_epoch in range(args.nb_epochs):
517         u = n_epoch / args.nb_epochs * math.pi
518         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
519 else:
520     u = {
521         int(k): float(v)
522         for k, v in [
523             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
524         ]
525     }
526
527     learning_rate_schedule = {}
528     learning_rate = args.learning_rate
529     for n_epoch in range(args.nb_epochs):
530         if n_epoch in u:
531             learning_rate = u[n_epoch]
532         learning_rate_schedule[n_epoch] = learning_rate
533
534 log_string(f"learning_rate_schedule {learning_rate_schedule}")
535
536 ##############################
537
538 if args.oneshot:
539     oneshot(model, task)
540     exit(0)
541
542 ##############################
543
544 if nb_epochs_finished >= args.nb_epochs:
545     n_epoch = nb_epochs_finished
546     train_perplexity = compute_perplexity(model, split="train")
547     test_perplexity = compute_perplexity(model, split="test")
548
549     log_string(
550         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
551     )
552
553     task.produce_results(n_epoch, model)
554
555     exit(0)
556
557 ##############################
558
559 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
560     learning_rate = learning_rate_schedule[n_epoch]
561
562     log_string(f"learning_rate {learning_rate}")
563
564     if args.optim == "sgd":
565         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
566     elif args.optim == "adam":
567         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
568     elif args.optim == "adamw":
569         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
570     else:
571         raise ValueError(f"{args.optim=}")
572
573     model.train()
574
575     nb_train_samples, acc_train_loss = 0, 0.0
576
577     for input in task.batches(split="train"):
578         input = input.to(device)
579         output = model(mygpt.BracketedSequence(input)).x
580         loss = F.cross_entropy(output.transpose(1, 2), input)
581         acc_train_loss += loss.item() * input.size(0)
582         nb_train_samples += input.size(0)
583
584         optimizer.zero_grad()
585         loss.backward()
586         optimizer.step()
587
588     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
589     test_perplexity = compute_perplexity(model, split="test")
590
591     log_string(
592         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
593     )
594
595     task.produce_results(n_epoch, model)
596
597     checkpoint = {
598         "nb_epochs_finished": n_epoch + 1,
599         "model_state": model.state_dict(),
600         "rng_state": torch.get_rng_state(),
601     }
602
603     if torch.cuda.is_available():
604         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
605
606     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
607     torch.save(checkpoint, checkpoint_name)
608     log_string(f"saved checkpoint {checkpoint_name}")
609
610 ######################################################################