Update
[beaver.git] / mygpt.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math
9
10 import torch
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 ######################################################################
16
17 # A BracketedSequence is a BxTx... tensor with a first and a nb time
18 # steps to compute.
19
20 # Modules able to process it expect that they will have to process a
21 # first bracket starting at t=0, followed by a succession of brackets
22 # that move forward in time, do not overlap, and cover the axis T with
23 # no holes.
24 #
25 # Although it is more general, for a classical prompt-conditioned
26 # auto-regressive process it will be a first bracket starting at 0 and
27 # of arbitrary length for the "prompt", followed by brackets of length
28 # 1 for the successive tokens.
29 #
30 # Modules able to process brackets may implement a cache that is
31 # resetted when the input bracket starts at t=0
32
33
34 class BracketedSequence:
35     def __init__(self, x, first=None, nb=None):
36         self.x = x
37         self.first = 0 if first is None else first
38         self.nb = x.size(1) if nb is None else nb
39
40     def slice(self):
41         return self.x[:, self.first : self.first + self.nb]
42
43
44 ######################################################################
45
46
47 class WithResidual(nn.Module):
48     def __init__(self, *f):
49         super().__init__()
50         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
51
52     def forward(self, bs):
53         bs.x = bs.x + self.f(bs).x
54         return bs
55
56
57 ######################################################################
58
59
60 class CacheWrapper(nn.Module):
61     def __init__(self, *f):
62         super().__init__()
63         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
64
65     def forward(self, bs):
66         if bs.first == 0:
67             y = self.f(bs.slice())
68             self.cache_y = y.new(*((y.size(0), bs.x.size(1)) + y.size()[2:]))
69             self.cache_y[:, bs.first : bs.first + bs.nb] = y
70         else:
71             self.cache_y[:, bs.first : bs.first + bs.nb] = self.f(bs.slice())
72
73         bs.x = self.cache_y
74
75         return bs
76
77
78 ##############################
79
80
81 class AddPositionalEncoding(nn.Module):
82     def __init__(self, len_max):
83         super().__init__()
84         self.len_max = len_max
85
86     # [Vaswani et al 2018] PE_{t,2i} = sin(t/(L^{2i/D})), PE_{t,2i+1} = cos(t/(L^{2i/D}))
87
88     def forward(self, bs, order):  # NxTxD, T
89         if bs.first == 0:
90             t = (
91                 torch.arange(bs.x.size(1) + 1, dtype=bs.x.dtype, device=bs.x.device)[
92                     :, None
93                 ]
94                 - 1
95             )
96             j = torch.arange(bs.x.size(2) // 2, dtype=bs.x.dtype, device=bs.x.device)[
97                 None, :
98             ]
99             k = j % 2
100             pe = (
101                 torch.sin(
102                     t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
103                 )
104                 .unsqueeze(0)
105                 .expand(bs.x.size(0), -1, -1)
106             )
107
108             order_output = order + 1
109             order_input = F.pad(order + 1, (1, -1))
110
111             pe_input = pe.gather(
112                 1, order_input.unsqueeze(-1).expand(-1, -1, pe.size(-1))
113             )
114             pe_output = pe.gather(
115                 1, order_output.unsqueeze(-1).expand(-1, -1, pe.size(-1))
116             )
117
118             self.pe = torch.cat((pe_input, pe_output), 2)
119             self.cache_y = bs.x.new(bs.x.size())
120
121         self.cache_y[:, bs.first : bs.first + bs.nb] = (
122             bs.slice() + self.pe[:, bs.first : bs.first + bs.nb]
123         )
124
125         bs.x = self.cache_y
126
127         return bs
128
129
130 ##############################
131
132
133 class QKVAttention(nn.Module):
134     def __init__(
135         self,
136         dim_in,
137         dim_qk,
138         dim_v,
139         nb_heads=1,
140         causal=False,
141         attention_dropout=0.0,
142         amm_generator=None,
143     ):
144         super().__init__()
145
146         def randw(*d):
147             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
148
149         if amm_generator is None:
150             self.amm_generator = (
151                 lambda d: torch.arange(d)[:, None] < torch.arange(d)[None, :]
152             )
153         else:
154             self.amm_generator = amm_generator
155
156         self.causal = causal
157         self.attention_dropout = attention_dropout
158
159         self.w_q = randw(nb_heads, dim_qk, dim_in)
160         self.w_k = randw(nb_heads, dim_qk, dim_in)
161         self.w_v = randw(nb_heads, dim_v, dim_in)
162         self.w_o = randw(dim_v * nb_heads, dim_in)
163
164     def forward(self, bs_q):
165         x_q = bs_q.x
166
167         if bs_q.first == 0:
168             self.cache_k = x_q.new_zeros(
169                 x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
170             )
171             self.cache_v = x_q.new_zeros(
172                 x_q.size(0), self.w_v.size(0), x_q.size(1), self.w_v.size(1)
173             )
174             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
175
176         q = torch.einsum(
177             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_q
178         )
179         self.cache_k[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
180             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_k
181         )
182         self.cache_v[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
183             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_v
184         )
185
186         a = torch.einsum(
187             "nhtd,nhsd->nhts", q, self.cache_k[:, :, : bs_q.first + bs_q.nb]
188         ) / math.sqrt(self.w_q.size(1))
189
190         if self.causal:
191             if bs_q.first == 0:
192                 self.cache_attzero = self.amm_generator(x_q.size(1)).to(q.device)[
193                     None, None, :, :
194                 ]
195             a = a.masked_fill(
196                 self.cache_attzero[
197                     :, :, bs_q.first : bs_q.first + bs_q.nb, : bs_q.first + bs_q.nb
198                 ],
199                 float("-inf"),
200             )
201
202         a = a.softmax(dim=3)
203         a = F.dropout(a, self.attention_dropout, self.training)
204
205         y = torch.einsum(
206             "nhts,nhsd->nthd", a, self.cache_v[:, :, : bs_q.first + bs_q.nb]
207         ).flatten(2)
208
209         self.cache_y[:, bs_q.first : bs_q.first + bs_q.nb] = y @ self.w_o
210
211         bs_q.x = self.cache_y
212
213         return bs_q
214
215
216 ##############################
217
218
219 class MyGPT(nn.Module):
220     def __init__(
221         self,
222         vocabulary_size,
223         dim_model,
224         dim_keys,
225         dim_hidden,
226         nb_heads,
227         nb_blocks,
228         causal=False,
229         dropout=0.0,
230         len_max=1e5,
231         amm_generator=None,
232     ):
233         super().__init__()
234
235         assert dim_model % nb_heads == 0
236
237         self.embedding = CacheWrapper(
238             nn.Embedding(vocabulary_size, dim_model), nn.Dropout(dropout)
239         )
240         self.pe = AddPositionalEncoding(len_max)
241
242         trunk_blocks = []
243
244         for b in range(nb_blocks):
245             trunk_blocks += [
246                 WithResidual(
247                     CacheWrapper(nn.LayerNorm((dim_model,))),
248                     QKVAttention(
249                         dim_in=dim_model,
250                         dim_qk=dim_keys,
251                         dim_v=dim_model // nb_heads,
252                         nb_heads=nb_heads,
253                         causal=causal,
254                         attention_dropout=dropout,
255                         amm_generator=amm_generator,
256                     ),
257                 ),
258                 WithResidual(
259                     CacheWrapper(
260                         nn.LayerNorm((dim_model,)),
261                         nn.Linear(in_features=dim_model, out_features=dim_hidden),
262                         nn.ReLU(),
263                         nn.Linear(in_features=dim_hidden, out_features=dim_model),
264                         nn.Dropout(dropout),
265                     ),
266                 ),
267             ]
268
269         self.trunk = nn.Sequential(*trunk_blocks)
270
271         self.readout = CacheWrapper(
272             nn.Linear(in_features=dim_model, out_features=vocabulary_size)
273         )
274
275         with torch.no_grad():
276             for m in self.modules():
277                 if isinstance(m, nn.Embedding):
278                     m.weight.normal_(mean=0, std=2e-2)
279                 elif isinstance(m, nn.LayerNorm):
280                     m.bias.zero_()
281                     m.weight.fill_(1.0)
282
283     def forward(self, bs, mode="standard", order=None):
284         bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
285         if order is None:
286             order = torch.arange(bs.x.size(1), device=bs.x.device)[None, :].expand_as(
287                 bs.x
288             )
289         bs = self.embedding(bs)
290         bs = self.pe(bs, order)
291
292         if mode == "standard":
293             bs = self.trunk(bs)
294             bs = self.readout(bs)
295         elif mode == "head":
296             bs = self.trunk(bs)
297         elif mode == "deep":
298             r = []
299             for l in self.trunk:
300                 bs = l(bs)
301                 r += [bs.slice()]
302             bs = BracketedSequence(torch.cat(r, -1))
303         else:
304             raise ValueError(f"{mode=}")
305         return bs
306
307
308 ######################################################################
309
310 if __name__ == "__main__":
311     print("Basic check.")
312
313     vocabulary_size = 10
314     x = torch.randint(vocabulary_size, (9, 7))
315
316     model = MyGPT(
317         vocabulary_size=vocabulary_size,
318         dim_model=18,
319         dim_keys=50,
320         dim_hidden=100,
321         nb_heads=2,
322         nb_blocks=1,
323         dropout=0.1,
324     )
325
326     model.eval()
327
328     y1 = model(BracketedSequence(x)).x
329
330     y2 = torch.randn_like(y1)
331     for s in range(x.size(1)):
332         z = model(BracketedSequence(x, s, 1))
333         y2[:, s] = z.x[:, s]
334
335     # print(y1.max(dim = 2).values)
336     # print(y2.max(dim = 2).values)
337     print(f"error={((y1 - y2).norm() / (y1.norm() + y2.norm())).item()}")
338
339 ######################################################################